

HALFEN NATURAL STONE SUPPORT SYSTEMS Technical Product Information

We are one team. We are Leviat.

Leviat is the new name of CRH's construction accessories companies worldwide.

Under the Leviat brand, we are uniting the expertise, skills and resources of HALFEN and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust, including HALFEN Natural stone support systems, will remain an integral part of Leviat's comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH's construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com

Our product brands include:

PLAKA

60 locations

sales in **30+** countries

3000 people worldwide

Introduction

HALFEN Natural stone façades - many advantages from one source

Natural stone has numerous advantages when used for designing façades. It is a durable, low maintenance material which improves a building's sound insulation. Natural stone façades also contribute to the aesthetic appearance of your project and makes it "standout".

Its heat storage properties make it an excellent material for insulating against summer heat. The heat is kept away from the core of the building, reducing the necessity to cool the building. These are just a few of the many advantages of designing façades with natural stone.

Natural stone façades are usually designed and constructed as ventilated curtain façades. HALFEN Natural stone fixing systems are the optimal solution for realising this type of ventilated curtain facade.

Office building Posen, Poland

HALFEN has numerous years of experience and competence in façade construction, as our highly experienced project engineers have proven time and time again in various major projects with which we have been entrusted.

mima (Middlesbrough Institute of Modern Art), Middlesbrough, England

We offer customers a comprehensive package of planning and engineering services to reliably plan and realise their natural stone façades as reliably and as efficiently as possible.

Certified HALFEN quality

Quality assurance and safety are of ever increasing importance in the construction of buildings. The HALFEN Body anchors and HALFEN Grout-in anchors have been quality tested and certified by the Nuremberg LGA Landesgewerbeanstalt (Nuremberg based independent certification agency).

The LGA is part of the "TÜV Rheinland Group", Germany's renowned, inde-

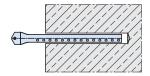
pendent and neutral, safety and quality testing organisation. The quality certificate is the first independent quality certificate awarded for the production and the construction of façade systems of this type.

The precondition for a quality-seal award are comprehensive tests by the LGA. This includes assessment of the manufacturing process, the static load

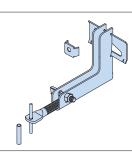
capacities, and the complete documentation of the load-bearing anchors. It is a comprehensive and independent quality assurance covering all characteristics of the product.

Steel structures

A4: Steel, corrosion resistance class (CRC) III acc. to EN 1993-1-4: 2015-10, Table A.3 (group 1.4362, 1.4571...)


A2: Steel, corrosion resistance class (CRC) II acc. to EN 1993-1-4: 2015-10, Table A.3 (group 1.4311, 1.4307...)

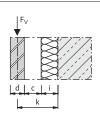
Contents


Introduction

-	Natural stone support systems	2
-	Thermal bridges in natural stone support systems	4 – 5
-	Dynamic loads in combination with natural stone support systems	5
-	Custom solutions	6
-	Applications	7-8

HALFEN Natural stone support systems

-	HALFEN Body anchors	12
-	HALFEN Grout-in anchors	13 – 15
-	HALFEN Support structures	16 - 19
-	HALFEN Scaffold anchors	9,23


Accessories

-	HALFEN Fixing material	20
-	HALFEN Soffit / Jamb support anchor	21 – 22
-	HALFEN Soffit anchor	22
-	Installation sequence	24 – 25

Design fundamentals

-	Design fundamentals	26
-	Tender specifications	27

Contacts / Technical Support

29

Introduction

Thermal bridges with HALFEN Natural stone support systems

To meet the requirements for calculating thermal bridges, HALFEN provides the thermal bridge coefficient χ for their body anchors, HALFEN SUK Sub-structures elements and grout-in anchors.

The χ -value defines the effect of a three-dimensional point thermal bridge caused by the fixing of the anchor and penetration of the thermal insulation. Using these values the planner can exactly calculate the effect on the thermal transfer coefficients U [W/m²×K]

of the building caused by the HALFEN Natural stone support system.

The values are dependent on both the thickness and thermal conductivity of the insulation, and the material of the main structure (concrete/brickwork).

Thermal b	Thermal bridge coefficient χ [W/K] for λ_{ins} = 0.035 (thermal conductivity of the insulation) for body anchors in concrete														
							Insul	ation thic	kness d _{ins}	[cm]					
		4	6	8	10	12	14	16	18	20	22	24	26	28	30
DT-4xx		0.025	0.020	0.017	0.014	0.012	0.011	0.010	0.009	0.008	0.008	0.007	0.007	0.006	0.006
DT-13xx	O Park	0.045	0.037	0.031	0.026	0.023	0.020	0.018	0.017	0.015	0.014	0.013	0.012	0.011	0.011
ВА-6хх		0.020	0.016	0.014	0.012	0.010	0.009								
BA-13xx		0.035	0.029	0.024	0.021	0.018	0.016								
DH-10xx		0.007	0.006	0.005	0.004	0.004									
DH-17xx		0.011	0.009	0.007	0.006	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.002

Thermal bridge coefficient χ [W/K] for λins = 0.035 (thermal conductivity of the insulation) for grout-in anchors in concrete														
						Insu	lation thic	kness d _{ins}	[cm]					
	4	6	8	10	12	14	16	18	20	22	24	26	28	30
UHA - 5	0.003	0.003	0.002	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
UHA - 7	0.007	0.005	0.005	0.004	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002
UMA - 10	0.007	0.006	0.005	0.004	0.004	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002
UMA - 12	0.009	0.007	0.006	0.005	0.004	0.004	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002
UMA - 16	0.012	0.010	0.008	0.007	0.006	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.003
UMA - 18	0.018	0.014	0.012	0.010	0.009	0.008	0.007	0.006	0.006	0.005	0.005	0.005	0.004	0.004
UMA - 22	0.022	0.018	0.015	0.013	0.011	0.010	0.009	0.008	0.007	0.007	0.006	0.006	0.006	0.005
UMA - 25	0.026	0.021	0.017	0.015	0.013	0.011	0.010	0.009	0.009	0.008	0.007	0.007	0.006	0.006
UMA - 28	0.035	0.029	0.024	0.020	0.018	0.016	0.014	0.013	0.012	0.011	0.010	0.009	0.009	0.008
UMA - 33	0.046	0.038	0.031	0.027	0.023	0.021	0.019	0.017	0.015	0.014	0.013	0.012	0.011	0.011

Technical Support

HALFEN Engineering Support

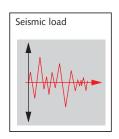
HALFEN engineering can provide planning and design service plus complementary consultation for your individual projects. Please contact us: see page 28 for contact information. Alternatively, simply scan the QR Code to visit our mobile website.

Introduction

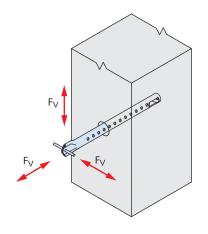
Thermal bridge	Thermal bridge coefficient χ [W/K] for λ_{ins} = 0.035 (thermal conductivity of the insulation) for grout-in anchors in perforated brick														
						Insu	lation thic	kness d _{ins} [[cm]						
	4	6	8	10	12	14	16	18	20	22	24	26	28	30	
UHA - 5	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
UHA - 7	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.001	
UMA - 10	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	
UMA - 12	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	
UMA - 16	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.002	
UMA - 18	0.008	0.008	0.007	0.007	0.006	0.006	0.005	0.005	0.005	0.004	0.004	0.004	0.004	0.004	
UMA - 22	0.010	0.010	0.009	0.009	0.008	0.007	0.007	0.006	0.006	0.006	0.005	0.005	0.005	0.004	
UMA - 25	0.011	0.011	0.011	0.010	0.009	0.008	0.008	0.007	0.007	0.006	0.006	0.006	0.005	0.005	
UMA - 28	0.016	0.016	0.015	0.014	0.013	0.012	0.011	0.010	0.009	0.009	0.008	0.008	0.007	0.007	
UMA - 33	0.021	0.021	0.019	0.018	0.016	0.015	0.014	0.013	0.012	0.012	0.011	0.010	0.010	0.009	

Channel support systems are the optimal solution for reducing thermal bridges. HALFEN SUK and UKB are anchored to the building at only a few fixing points. All elements anchored to the load-bearing structure are manufactured from stainless steel.

Stainless steel has a fourteen times lower thermal conductivity than aluminium. The higher strength of stainless steel compared to aluminium also makes it possible to design elements with a smaller cross-section.


This has a positive effect on heat transmission through the anchor element. It is also possible to place a thermal separator between the anchor and the load-bearing structure.

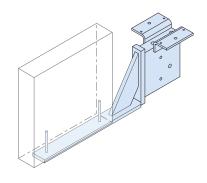
This feature reduces thermal bridging and therefore heat loss.


Thermal bridge co	Thermal bridge coefficient χ [W/K] for λ_{ins} = 0.035 (thermal conductivity of the insulation) for SUK individual parts anchored in concrete														
SUK-F		Insulation thickness d _{ins} [cm]													
SUK-A	4	6	8	10	12	14	16	18	20	22	24	26	28	30	
SUK - F	0.0217	0.0164	0.0131	0.0109	0.0094	0.0082	0.0073	0.0065	0.0059	0.0054	0.0050	0.0047	0.0043	0.0041	
SUK - A	0.0360	0.0271	0.0217	0.0181	0.0155	0.0135	0.0120	0.0108	0.0098	0.0090	0.0083	0.0077	0.0072	0.0067	

Dynamic loads with HALFEN Natural stone support systems

HALFEN Natural stone support systems can also be installed in seismic active regions.

Grout-in anchors UMA/UHA are statically designed for seismic loads and can fully transfer the vertical loads on pages 13 and 15 in all three load directions. With appropriate design all HALFEN Natural stone anchors can be adapted to meet safety requirements for the relevant earthquake zones.

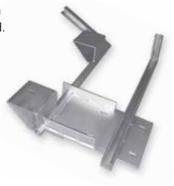

Introduction

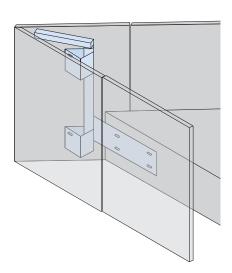
Custom solutions

Construction project: Allerhuset, Denmark

The unique design of natural stone façades demands special solutions for anchoring. The following are examples of custom solutions developed by HALFEN for natural stone façades.

An important design feature in this façade are the 90 degrees projecting natural stone strips. These strips are attached to the precast sub structure of the building using HALFEN Natural stone anchors.



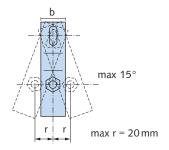


Construction project: Multihuset, Denmark

Special custom element for fixing HALFEN Natural stone panels in locations where access is limited.

References

More references can be found on our website **www.halfen.com**. Or simply scan the QR Code.


Applications

HALFEN Body anchors

Features

HALFEN Body anchors used together with HALFEN HTA/HZA Cast-in channels guarantee maximum adjustability to compensate for on-site tolerances.

HALFEN Body anchors can also be fixed to a suitable load-bearing structure using HALFEN Anchor bolt systems. HALFEN Body anchors cover a wide range of applications for fixing natural stone.

Advantages

- three-dimensional adjustability
- flexible fixing methods
- vertical anchor adjustment (using a serrated plate or wedge plate)
- horizontal anchor adjustment (using a spade bolt)
- anchors are adjustable by 15°
- TÜV/LGA quality tested
- can be subjected to load immediately after installation → fast construction
- natural stone panel with pin support
- quantifiable thermal bridge coefficient χ [W/K]

HALFEN Grout-in anchors

Features

HALFEN Grout-in anchors are a traditional method of anchoring natural stone façades. The tubular section of the UMA/UHA anchors makes them suitable for both horizontal and vertical joints in natural stone panel façades.

Adjustment is by casting the anchors in a sufficiently large, pre-drilled mortar filled hole.

The joints between the natural stone slabs must be supported with shims until the mortar has hardened and final load-bearing capacity has been reached.

Advantages

- type tested
- one type of anchor for both horizontal and vertical joint fixing
- TÜV / LGA tested quality
- anchored in the drillhole using cement based mortar
- can be used for large stand-off installations and high loads
- suitable for seismic loads in earthquake regions
- natural stone panel with pin bearing
- quantifiable thermal bridge coefficient χ [W/K]

Applications

HALFEN SUK Stainless steel support structure

Features

The HALFEN SUK Stainless steel support system is ideal both for new building and modernization projects. Its unique characteristic is the capacity to span a non-load-bearing substrate.

It can be used for installation of large, varying stand-off distances from the load-bearing structure. A4/AISI 316 grade stainless steel material guarantees a high resistance against corrosion.

Fewer required fixing points reduce installation costs for the whole support system. Fewer fixing points also reduce heat-loss, resulting in very good thermal properties when using the SUK System.

Advantages

- height of suspended channel system freely adjustable
- horizontal adjustment (using a spade bolt)
- fast assembly and therefore faster construction times
- proven in numerous projects
- spans non-load-bearing sub structures
- panel/slab support with pin bearing
- suitable for custom designed constructions
- high corrosion resistance
- high load bearing capacity

HALFEN UKB Support structure in stainless steel and aluminium

Features

Light weight and easy to use support system: Support and restraint brackets in A4/AISI 316 stainless steel, vertical channels in aluminium.

HALFEN Body anchors type BA-606 are quickly and easily fixed to the aluminium profile with self-tapping screws.

This system combines the advantages of both body anchors and channel systems.

Advantages

- suspended channel system with multiple adjustment possibilities
- spans non-load-bearing sub structures
- stone slabs are supported with pins
- quickly assembled and therefore faster construction times
- proven success in many projects
- aluminium channels can be drilled and cut to length on site

HALFEN Body Anchors

HALFEN Body anchor

The HALFEN Body anchors product range provides solutions for all installation requirements for natural stone facades.

Body anchors are three-dimensionaly adjustable and are available for various stand-off sizes and load ranges. Vertical adjustment is with a serrated or wedge plate.

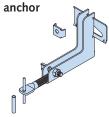
The stand-off distance of the natural stone slab is adjusted using a spade bolt. It is also possible to swivel the anchor by up to 15°.

The anchors can be subjected to load immediately after installation to HALFEN Cast-in channels or to a suitable load-bearing structure. Pins secure the natural stone slabs to the anchors.

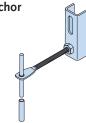
The anchor pins are available with full pins (\emptyset 5×70 mm), design 1, and with half-pins (\emptyset 5 × 35 mm), design 2. HALFEN also provides various special custom designs, for example design 3 and 4.

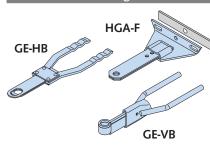
Illustrations of available designs:

→ page 12



HALFEN BA Body anchor

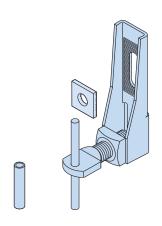

- stand-off distances between 60 and 120 mm¹
- max. permissible load 600 N to 1300 N
- material[®]; stainless steel A4 or A2
- ① Nominal dimensions
- ② Material specifications → page 2


- stand-off distances between 140 and 300 mm⁽¹⁾
- max. permissible load 400 N to 1300 N
- · spade bolt secured with a locking bolt
- material²; stainless steel A4 or A2
- ① Nominal dimensions
- ② Material specifications → page 2

HALFEN DH Body anchor

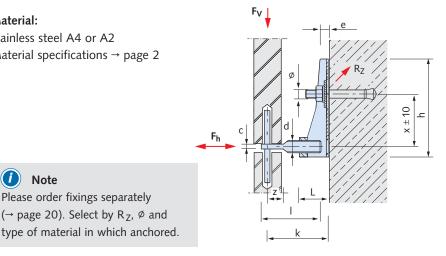
- restraint anchor only, not suitable for carrying dead load of element
- stand-off distances between 60 and 320 mm¹
- max. permissible load 850 N to 1300 N
- material[®]; stainless steel A4 or A2
- ① Nominal dimensions
- ② Material specifications → page 2

HALFEN Scaffolding anchors for natural stone façades


See page 23. More informationen about HALFEN Scaffold anchors can be found in Technical Product Information "HALFEN Scaffold anchors". Complimentary download at: www.halfen.com/brochures/Catalogues/accessories

HALFEN Body Anchors

HALFEN BA Body anchor



Material:

Note

Stainless steel A4 or A2 Material specifications → page 2

Please order fixings separately (→ page 20). Select by R_{Z} , \emptyset and

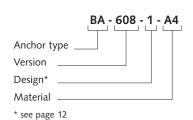
HALFEN BA Body anchors are designed

The anchors consist of a sturdy base element, a serrated plate and a

with a maximum load of 1300 N.

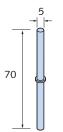
for 60 to 120 mm stand-off distances

The BA Body anchor is fixed according to the installation instructions, either in the horizontal or vertical joint in load-bearing substrate to HALFEN Cast-in channels or HALFEN Anchor bolt systems.

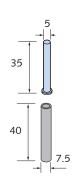

The bracket has a vertical 8.5 × 28 mm

slot and a serrated plate for easy height adjustment.

As with all body anchors the distance to the load-bearing substrate is adjusted by turning the spade bolt in or out. The anchor bracket can be adjusted laterally by swivelling the whole unit.


Ordering example

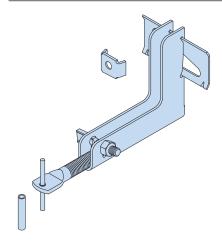
spade bolt.


Pin dimensions of all HALFEN Body anchors:

Loose anchor pin with collar for designs 1, 3 and 7 ø 5 × 70 mm

Fixed half-pin for designs 2 and 4 Ø 5 × 35 mm

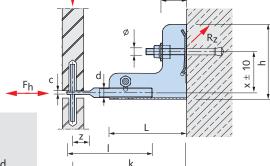
Sleeve Ø 7.5 × 40 mm



Body ancho	Body anchors BA													
	Perm. load	Sta	nd-off dista	nce		Suppo	rt body				Connection			
Туре	F _V [N]	k [mm]	min k [mm]	max k [mm]	x [mm]	L [mm]	h [mm]	e [mm]	d [mm]	c [mm]	l [mm]	z [mm]	ø [mm]	
606	900	60	52	70	50	29	95	10	12	4	58	15	8.5×28	
608	600	80	65	90	55	36	95	10	12	4	71	18	8.5×28	
610	600	100	80	120	55	56	95	10	12	4	85	18	8.5×28	
612	600	120	100	140	55	76	95	10	12	4	85	18	8.5×28	
1308	1,300	80	70	100	65	47	110	10	16	5	74	18	8.5×28	
1310	1,300	100	90	120	65	47	110	10	16	5	94	18	8.5×28	
1312	1,300	120	105	135	65	47	110	10	16	5	106	18	8.5×28	

perm. F_h = actual F_V

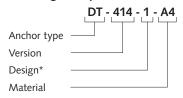
HALFEN Body Anchors


HALFEN DT Body anchor

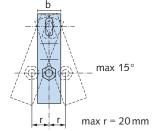
HALFEN DT Body anchors are suitable for large stand-off distances of 140 mm up to 300 mm and high loads up to 1300 N. The pre-assembled anchor consisting of the bracket, the adjustable wedge plate and a clamping bolt

Material:

Stainless steel A4 or A2
Material specifications → page 2

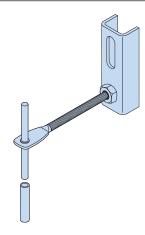

Note

Please order fixings separately (\rightarrow page 20). Select by R_Z, \emptyset and type of material in which anchored.


is supplied ready for installation. The stand-off distance is adjusted using the spade bolt. The anchor can be pivoted for lateral adjustment. The clamping bolt is pre-assembled at the factory for left to right installation

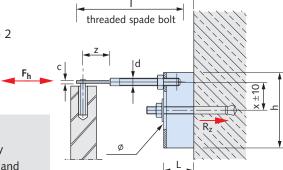
but is easily adaptable for right to left installation. After aligning each natural stone panel the clamping bolts are tightened with a torque of 5 Nm.

Ordering example


^{*} see page 12

Body anch	ors DT												
Tuno	Perm. load	Stand-	off distance	e [mm]		Support be	ody [mm]			Spade b	olt [mm]		Connection [mm]
Type	F _V [N]	k	min k	max k	x	L	h	е	d	С	- 1	Z	Ø
414	400	140	120	170	50	95	92	30	12	4	105	21	9
416	400	160	140	190	55	115	97	30	12	4	105	21	9
418	400	180	160	210	60	135	102	30	12	4	105	21	9
420	400	200	180	230	65	155	107	30	12	4	105	21	9
422	400	220	200	250	70	175	112	30	12	4	105	21	9
424	400	240	220	270	75	195	117	30	12	4	105	21	9
426	400	260	240	290	80	215	122	30	12	4	105	21	9
428	400	280	260	310	85	235	127	30	12	4	105	21	9
430	400	300	280	330	90	255	132	30	12	4	105	21	9
1314	1,300	140	120	170	80	90	130	36	16	5	115	21	11
1316	1,300	160	140	190	85	110	135	36	16	5	115	21	11
1318	1,300	180	160	210	95	130	145	36	16	5	115	21	11
1320	1,300	200	180	230	80	150	130	36	16	5	115	21	13
1322	1,300	220	200	250	90	170	140	41	16	5	115	21	13
1324	1,300	240	220	270	95	190	145	41	16	5	115	21	13
1326	1,300	260	240	290	100	210	150	41	16	5	115	21	13
1328	1,300	280	260	310	105	230	155	41	16	5	115	21	13
1330	1,300	300	280	330	110	250	160	41	16	5	115	21	13
erm. F _h =	actual F _V												

HALFEN Body Anchors


HALFEN DH Body anchor

HALFEN DH Body anchors are 3-dimensionally adjustable. They are designed to carry only horizontal tension or pressure loads. DH Body anchors are used in combination with HALFEN BA and DT Body anchors.

Material:

Stainless steel A4 or A2
Material specifications → page 2

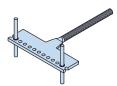
Note

Please order fixings separately (\rightarrow page 20). Select by R_Z, \emptyset and type of material in which anchored.

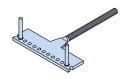
The anchor is mainly used at slab edges and corners or for parapet elements. It is designed for stand-off installation of 60 to 320 mm and horizontal loads of up to 1,300 N. The stand-off distance from the main load-bearing structure is adjusted using the spade bolt.

Vertical adjustment is with the 9×30 mm slot. This anchor is also laterally adjustable by swivelling the whole unit. The body anchor is delivered with an additional counter nut, which additionally locks the spade bolt.

Standard designs for BA, DT and DH:



Design 1Spade bolt with loose pin and sleeve



Design 2Spade bolt with fixed half-pin

Special designs for BA, DT and DH (on request):

Design 3
Spade bolt with 2 loose pins and 2 sleeves

Design 4
Spade bolt with
2 fixed half-pins

Design 7 Spade bolt with L-bracket, 2 loose pins and 2 sleeves

Body anchors	DH											
Туре	Perm. load	Stand-	off distance	e [mm]	Supp	ort body	[mm]		Spade b	olt [mm]		Connection [mm]
including locking nut	F _h [N]	k	min k	max k	х	h	L	d	С	1	Z	Ø
1006	850	60	53	68	26	80	18	6	2	60	21	9×30
1008	850	80	73	88	26	80	18	6	2	80	21	9×30
1010	850	100	93	108	26	80	18	6	2	100	21	9×30
1712	1,300	120	105	134	25	80	32	8	3	112	27	9×30
1714	1,300	140	125	154	25	80	32	8	3	132	27	9×30
1716	1,300	160	145	174	25	80	32	8	3	152	27	9×30
1718	1,300	180	165	194	25	80	32	8	3	172	27	9×30
1720	1,300	200	185	214	25	80	32	8	3	192	27	9×30
1722	1,300	220	205	234	25	80	32	8	3	212	27	9×30
1724	1,300	240	225	254	25	80	32	8	3	232	27	9×30
1726	1,300	260	245	274	25	80	32	8	3	252	27	9×30
1728	1,300	280	265	294	25	80	32	8	3	272	27	9×30
1730	1,300	300	285	314	25	80	32	8	3	292	27	9×30
1732	1,300	320	305	334	25	80	32	8	3	312	27	9×30

HALFEN Grout-in Anchors

HALFEN UMA Support anchor

Material:

Stainless steel A4 or A2 → page 2

Separate serviceability certificates for anchor bending are required.

Available UMA designs:

Design 1* Support anchor with loose pin and sleeve

Design 2* Support anchor with fixed half-pin

load-bearing capacity in horizontal and vertical joints. Depending on the anchor type, stand-off installations of up to 300 mm with maximum vertical loads of 4300 N are possible. A sufficiently dimensioned drill hole, filled with cement mortar, allows three-dimensional adjustability of the anchor. The anchors are type tested and are available in various designs.

The round cross section of the

HALFEN UMA Grout-in anchor makes

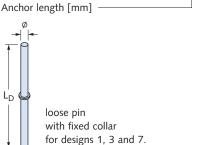
brickwork (> M12/IIa) and in concrete

(> C12/15). The anchor has the same

it especially suitable for grouting in

Design 3
Support anchor with 2 loose pins and 2 sleeves

Design 4Support anchor with 2 fixed half-pins

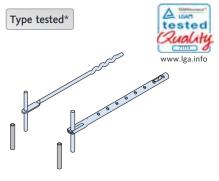

Ordering example

Anchor type

Design

Diameter d [mm]

Design 7 Support anchor with L-bracket, 2 loose pins and 2 sleeves



UMA - 16 - 3 - 210

Design 8
Threaded anchor
with countersink screw
(from UMA-16)
incl. 2 × EPDM washers

HALFEN UHA Restraint anchor

Material:

Stainless steel A4 or A2 → page 2

Independent serviceability certificate for anchor flexing is required.

HALFEN UHA Restraint anchors are used to support horizontal compression and tension forces.

The UHA Restraint anchor is used in combination with UMA Grout-in anchors. Restraint anchors are used

mainly at edges and at corners for parapets. The anchor is type tested and has the same advantages as the UMA Grout-in anchor. Loads of up to 2500 N are possible. The anchor is available in three standard designs.

Available UHA designs:

Design 1*
Restraint anchor with loose pin and sleeve

Design 2*
Restraint anchor with fixed half-pin

Design 8
Threaded anchor with countersink screw
(only for UHA-10) incl. 2 × EPDM washers

	UMA Support anchor														
Type	UMA-10	UMA-12	UMA-16	UMA-18	UMA-22	UMA-25	UMA-28	UMA-33	UHA-5	UHA-7	UHA-10				
d [mm]	10	12	16	18	22	25	28	33	5	7	10				
c [mm]	5.0	5.5	7.0	7.0	8.0	8.0	8.0	8.0	1.6	2.5	5.0				
anchor pin for design 1	ø5×70	ø5×70	ø6×75	Ø6×75	Ø6×75	Ø6×75	Ø6×75	Ø6×75	ø5×70	ø5×70	ø5×70				
anchor pin for design 2	Ø5×35	Ø5×35	ø6×37	Ø6×37	ø6×37	ø6×37	ø6×37	ø6×37	Ø5×35	Ø5×35	ø5×35				

^{*}only design 1 and 2 are type tested

HALFEN Grout-in Anchors in Concrete

Anchoring substrate: Concrete ≥ C12/15

Legend (pages 14-15)

 F_V = perm. vertical load per anchor $[N]^{\textcircled{1}}$

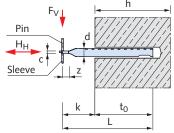
 H_H = perm. horizontal load in horizontal joint[N]

 H_V = perm. horizontal load in vertical joint [N]

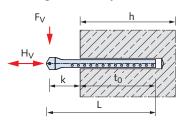
Øi = diameter of drill hole [mm]

h = min. component thickness [mm] with min. grout depth

 t_0 = min. grout depth of anchor in drill hole [mm]


k = cantilever

 $z = 21 \, \text{mm}$


 $c = \rightarrow table on page 13$

 \odot When determining the vertical load F_V it may be necessary to take into account not only the dead weight of the façade panels (plus any additional loads) but also a reaction force caused by the inclined position of the restraint anchor; in accordance with DIN 18516-3.

Anchoring in horizontal joints

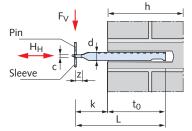
Anchoring in vertical joints

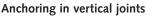
Anchor selection:

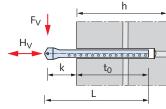
→ see notes on page 15

Concrete	Concrete ≥ C20/25 @				Suppo	ort anchor					traint and andard gr			straint ancl eady mixed	
	Anchor type	UMA 10	UMA 12	UMA 16	UMA 18	UMA 22	UMA 25	UMA 28	UMA 33	UHA 5	UHA 7	UHA 10	UHA 5	UHA 7	UHA 10
Canti-	Drill hole Øi	Ø20	Ø22	Ø26	Ø28	Ø32	Ø 35	Ø 40	Ø 45	Ø 15	Ø 17	Ø 20	Ø 15	Ø 17	Ø 20
lever k	Bonding depth ③	t ₀ ≥ 90	t ₀ ≥ 110	t ₀ ≥ 110	t ₀ ≥ 90	t ₀ ≥ 90	t ₀ ≥ 90	t ₀ ≥ 120	t ₀ ≥ 120	t ₀ ≥ 120					
[mm]	Component	h≥150	h≥150	h≥150	h≥150	h≥154	h≥160	h≥190	h≥200	h≥120	h≥124	h≥130	h≥150	h≥154	h≥160
40	F _V	275	420	800	1380										
40 50	H _H	649	880	1173	1319					523			1131		
60	H_V	325	496	944	1319					523			1131		
	L	150	150	150	150					150			180		
70	F _V	215	325	620	1030									.==.	
80	H _H	508	767	1173	1319					523	733		1131	1584	
90	H _V	254	384	732	1216					523	733		1131	1584	
	L	180	180	180	180	1220	1750	2720	4200	180	180		210	210	
100	F _V H _H	170 401	265 626	505 1173	820 1319	1330 1613	1750 1833	2720 2509	4300 2957	523	733		1131	1584	
110	H _V	201	313	596	968	1570	1833	2509	2957	523	733		1131	1584	
120	L	210	210	210	210	210	210	230	230	210	210		240	240	
	F _V	2.10	210	425	690	1100	1465	2240	3540	2.10	2.10		2.10	2.10	
130	H _H			1003	1319	1613	1833	2509	2957	523	733	733	1131	1584	1584
140 150	H _V			502	815	1299	1730	2509	2957	523	733	733	1131	1584	1584
150	Ĺ			240	240	240	240	260	260	240	240	240	270	270	270
	F _V				595	930	1265	1930	3005						
160	H _H				1319	1613	1833	2509	2957	523	733	733	1100	1584	1584
170 180	H_V				702	1098	1493	2278	2957	523	733	733	1100	1584	1584
	L				270	270	270	290	290	270	270	270	300	300	300
400	F _V				525	820	1100	1695	2615						
190 200	H _H				1240	1613	1833	2509	2957	523	733	733		1584	1584
210	H _V				620	968	1299	2001	2957	523	733	733		1584	1584
	L				300	300	300	320	320	300	300	300		330	330
220	F _V				470	730	975	1510	2335		700	700		4504	4504
230	H _H				1110	1613	1833	2509	2957		733	733		1584	1584
240	H _V L				555	862 330	1151 330	1783 350	2757 350		733 330	733 330		1584 360	1584 360
					330						330	330		360	360
250	F _V H _H				420 992	660 1558	875 1833	1360 2509	2100 2957		733	733			1584
260	⊓ _H H _V				496	779	1033	1606	2479		733	733			1584
270	L				360	360	360	380	380		360	360			390
	F _V					600	795	1240	1920		300	300			
280	H _H					1417	1833	2509	2957			733			
290 300	H _V					708	939	1464	2267			733			
300	Ľ					390	390	410	410			390			
2 Concr	2) Concrete C12/15 is possible: reg. pull-out resistance tests. ③ min to ≥ 80 mm; acc. to type test reports higher loads are possible if more bonding depth														

② Concrete C12/15 is possible; req. pull-out resistance tests. ③ min $t_0 \ge 80$ mm; acc. to type test reports higher loads are possible if more bonding depth ④ according to procedure A, DIN 18516-3, 6.3.7.2. ⑤ according to procedure C, DIN 18516-3, 6.3.7.4.


HALFEN Grout-in Anchors in Brickwork


Anchoring substrate: Brickwork min. M 12/IIa


Notes on anchor selection for pages 14 and 15:

- 1. Select cantilever size k
- 2. Select suitable vertical load F_V (for each anchor) from the column, taking H_H and H_V into consideration
- Select anchor type and length L and enter as shown in the ordering example (→ page 13)

Anchoring in horizontal joints

Brickwo	rk M 12/IIa	Support anchor								Restraint anchor		
BITCKWO		11000 10	11000 42	11000 00			11044 25	11044 20	UMA 33			
	Anchor type	UMA 10	UMA 12	UMA 16	UMA 18	UMA 22	UMA 25	UMA 28		UHA 5	UHA 7	UHA 10
Cantilever		Ø 20	ø 22	Ø 26	ø 32	ø 40	ø 40	ø 50	Ø 50	Ø 15	ø 17	Ø 20
k [mm]	Bonding depth ^①	t ₀ ≥ 120	t ₀ ≥ 120	t ₀ ≥ 120	t ₀ ≥ 120	t ₀ ≥ 120	t ₀ ≥ 120	t ₀ ≥ 140	t ₀ ≥ 140	t ₀ ≥ 90	t ₀ ≥ 90	t ₀ ≥ 90
	Component thickness	h≥240	h≥240	h≥240	h≥240	h≥240	h≥240	h≥240	h≥240	h≥240	h≥240	h≥240
40 50 60	F _V H _H H _V L	275 649 325 180	420 992 496 180	800 1067 944 180	1380 1067 1067 180					1067 1067 150		
70 80 90	F _V H _H H _V L	215508254210	325 767 384 210	620 1067 732 210	1030 1067 1067 210					1067 1067 180	1067 1067 180	
100 110 120	F _V H _H H _V L	170 401 201 240	265 626 313 240	505 1067 596 240	820 1067 968 240	1330 1067 1067 240	1750 1067 1067 240	2720 1067 1067 260	4300 1067 1067 260	1067 1067 210	1067 1067 210	
130 140 150	F _V H _H H _V L			425 1003 502 270	690 1067 815 270	1100 1067 1067 270	1465 1067 1067 270	2240 1067 1067 290	3540 1067 1067 290	1067 1067 240	1067 1067 240	1067 1067 240
160 170 180	F _V H _H H _V L				595 1067 702 300	930 1067 1067 300	1265 1067 1067 300	1930 1067 1067 320	3005 1067 1067 320	1067 1067 270	1067 1067 270	1067 1067 270
190 200 210	F _V H _H H _V L				525 1067 620 330	820 1067 968 330	1100 1067 1067 330	1695 1067 1067 350	2615 1067 1067 350	880 880 300	1067 1067 300	1067 1067 300
220 230 240	F _V H _H H _V L				470 1067 555 360	730 1067 862 360	975 1067 1067 360	1510 1067 1067 380	2335 1067 1067 380		1067 1067 330	1067 1067 330
250 260 270	F _V H _H H _V L							1360 1067 1067 410	2100 1067 1067 410		1067 1067 360	1067 1067 360
280 290 300	F _V H _H H _V L							1240 1067 1067 440	1920 1067 1067 440			1067 1067 390

① min $t_0 \ge 80$ mm; acc. to type test reports higher loads are possible if more bonding depth

① The maximal horizontal load must always be verified through tests in accordance with section 8 of DIN18516-3. According to DIN18516-3, 6.3.6, for static verification of a single anchor a maximum of $H = 1067 \, N \, (F_{rk} = 4.0 \, kN)$ can be assumed.

HALFEN Support Structure Systems

Advantages of the HALFEN Support structure systems

The standard HALFEN Support structure system consists of a series of vertical channels between floors. Fixings are only required at comparatively large intervals. This reduces the number of required connections to the underlying main support structure.

The Advantages

- the building's weatherproofing and insulation is penetrated less
- the number of thermal bridges is reduced. This helps to observe the applicable energy-saving regulations. In Germany: EnEV = German Energy-Saving Regulations

HALFEN Support structures are also suitable for spanning non-load-bearing constructions.

Furthermore, using pre-install support construction systems permit fast and economical fixing of façade panels and slabs.

Two main categories of support structures for different requirements are available from HALFEN:

- HALFEN SUK Stainless steel support structures
- HALFEN UKB Aluminium support structures

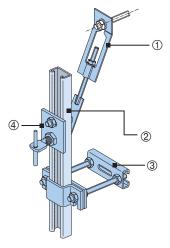
The HALFEN SUK stainless steel support structure is suitable for durable constructions in harsh environments and for high loads.

The HALFEN UKB System channel support structure is very easy to install and a cost effective alternative.

For detailed information about HALFEN Support structure systems please contact us.

→ see page 28 for contact information or just scan the code

Applications


mima - Middlesbrough Institute of Modern Art/England

HALFEN SUK Channel support structure

HALFEN SUK Stainless Steel Support Structure

Support Structure System SUK

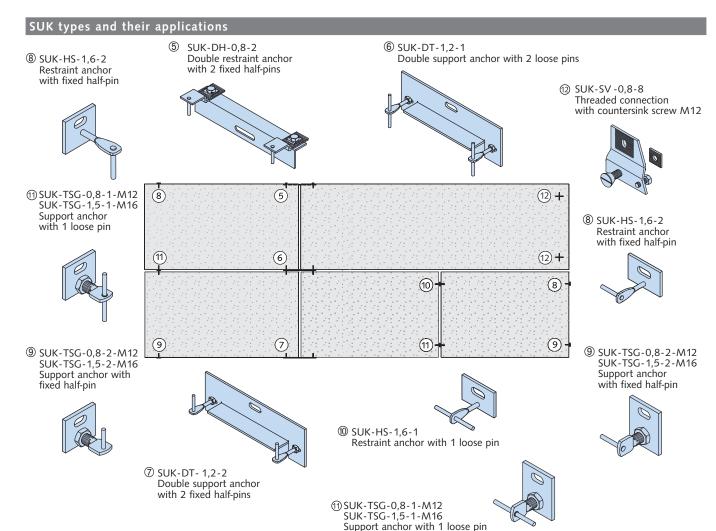
- ① Façade anchor fixed with bolt
- 2 Channel
- ③ Compression-tension brace
- 4 SUK-TSG Design 1 including installation parts

The HALFEN SUK System is an adjustable suspended channel system with support and restraint anchors that can easily be adjusted to any height for façade stand-off installations > 160 mm.

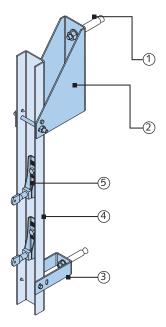
It is ideal for new constructions and remodelling projects. The system is especially suited for natural stone façades with large and varying distances to the load-bearing wall.

The system is made up of a small number of easy to install components and is therefore increases ease of installation. Non-load-bearing areas and recesses can be spanned.

The necessity for fewer anchor points allows quick installation of the stainless steel support structure and therefore faster façade element installation.


Material:

Stainless steel A4
Material specifications → page 2


Please contact our technical office for planning and ordering services.

→ see page 28 for contact information.

HALFEN UKB Aluminium Support Structure

Support structure with body anchors, system UKB

- ① Fastening with bolts
- ② Support bracket
- ③ Compression/tension brace
- 4 Vertical aluminium channel
- ⑤ HALFEN BA Body anchor, type 606

The HALFEN UKB System is a freely adjustable aluminium and stainless steel support structure with vertical U-profiled support elements for use in the ventilation gap of natural stone façades. This type of construction reduces thermal bridges to a minimum.

The type 606 HALFEN BA Body anchors are fixed to the front of the vertical channels.

The UKB Support structure allows for stand-off installation between 130 and 320 mm and three-dimensional adjustments of \pm 20 mm.

The **support brackets** are made of stainless steel A4.

They are either fastened to HALFEN Cast-in channels or to the load-bearing main structure using HALFEN Anchor bolts. Depending on environmental conditions, protection against surface corrosion must be taken into account, for example with barrier tape.

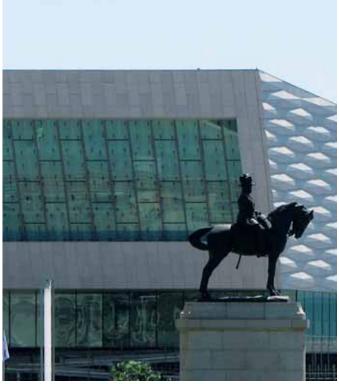
Material:

Aluminium (EN-A W6060) stainless steel A4 material specifications → page 2

For smaller stand-off sizes and exact details please contact us.

→ see page 28 for contact information.

Police station in Eberswalde, Germany



HALFEN UKB Channel support structure

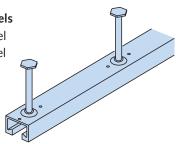
18

HALFEN Support structure

References

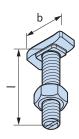
Museum of Liverpool/England

mima - Middlesbrough Institute of Modern Art/England



HALFEN Fixing Material

Body anchor fixing with HALFEN Cast-in channels and HALFEN T-head bolts


HALFEN HTA-CE Cast-in channels HTA-CE 28/15-A4 stainless steel

HTA-CE 38/17-A4 stainless steel

HALFEN T-head bolts for HTA-CE

HS 28/15 HS 38/17

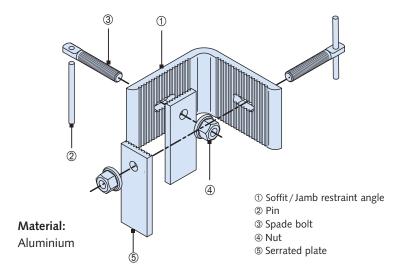
Body anchor fixing with HALFEN Cast-in channels											
HALFEN HTA-CE Cast-in channel			with HALFEN HS T-head bolt including hexagonal nut								
		Designation	Thread		l [mm]		b [mm]				
HTA-CE 28/15	- A4	HS 28/15 -	M8 M10	×	30	- A4	20				
HTA-CE 38/17	- A4	HS 38/17 -	M 10 M 12	×	30	- A4	29				

Fixing the body anchors with HALFEN HB-B Wedge anchor

HALFEN HB-B Wedge anchor for non-cracked concrete							
HALFEN Wedge anchor	Order no.	suitable for body anchor type					
HB-B- 8-10-19/ 75-A4	0432.060-00024	- BA 606 to BA 1312 - SOF 805 to SOF 819					
HB-B- 8-30-39/ 95-A4	0432.060-00007	- DT 414 to DT 430 - DH 1006 to DH 1732					
HB-B-10-30-36/105-A4	0432.060-00029	- DT 1314 to DT 1318					
HB-B-12-50-65/145-A4	0432.060-00016	- DT 1320 to DT 1330					

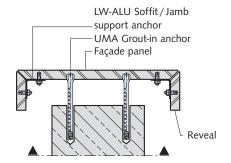
Fixing the HALFEN Body anchors with HALFEN HB-BZ Wedge anchor

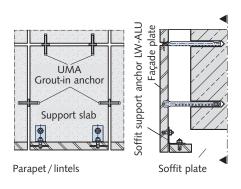
HALFEN HB-BZ Wedge anchor for cracked concrete							
HALFEN Wedge anchor	Order no.	suitable for body anchor type					
HB-BZ- 8-10-21/ 75-A4	0432.040-00027	- BA 606 to BA 1312 - SOF 805 to SOF 819					
HB-BZ- 8-50-61/115-A4	0432.040-00028	- DT 414 to DT 430 - DH 1006 to DH 1732					
HB-BZ-10-50-70/130-A4	0432.040-00030	- DT 1314 to DT 1318					
HB-BZ-12-50-70/145-A4	0432.040-00032	- DT 1320 to DT 1330					

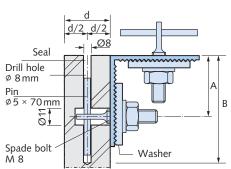

Fixing Material for Natural Stone

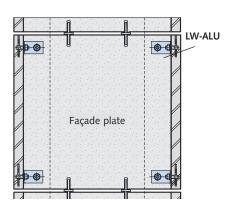
HALFEN LW-ALU Soffit angles

The soffit/jamb brackets and restraint angles significantly improve the connection between façade and soffit/jamb elements, especially when using natural stone.


The non DIN compliant pin and glue process can be omitted. The façade slabs can be installed quickly, simply and efficiently in the precast factory or on site.


The support anchors are adjustable (up to ±5 mm); façade, soffit and jamb panels can also be installed with open joints. To prevent stresses the panels are fixed with support brackets and restraint anchors.



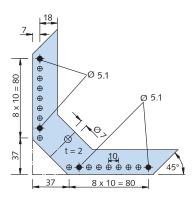


Soffit /jamb support anchors are available in stainless steel on request.

Pillar cladding

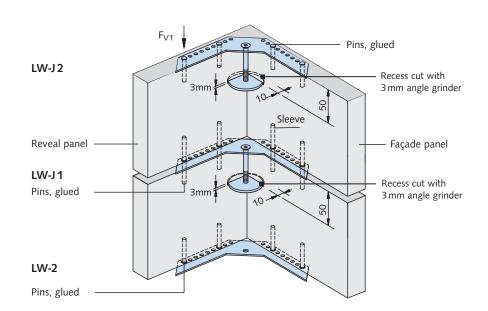
HALFEN LW Jamb/recess bracket: dimensions							
HALFEN LW -ALU Jamb / recess bracket	Side length [mm]	Angle height [mm]	Dimension A	Dimension B			
LW- 60/40-ALU	60	40	35	80			
LW- 60/60-ALU	60	60	35	80			
LW- 80/40-ALU	80	40	50	90			
LW- 80/60 ALU	80	60	50	90			
LW- 90/40-ALU	90	40	50	90			
LW- 90/60 ALU	90	60	50	90			
LW-100/40-ALU	100	40	50	90			
LW-100/60-ALU	100	60	50	90			

Further details


Please contact our technical team for inquiries concerning specific detailing. Contact information: see page 28.

Natural Stone Anchor Accessories

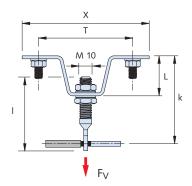
HALFEN LW Soffit angles and LW-J Adjustable soffit angles


Dimensions

LW -1/-2 and LW J-1/J-2, adjustable

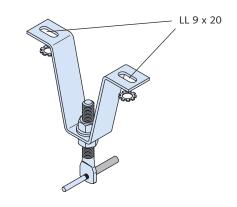
Material:

Stainless steel A4
Material specifications → page 2


HALFEN SOF Soffit anchor

HALFEN SOF Soffit anchors are intended for suspending natural stone slabs and panels.

Maximum loading $F_V = 800 \, N$


Dimensions

HALFEN SOF Soffit anchor

Material:

Stainless steel A4
Material specifications → page 2

SOF Soffit anchor							
	Sta	and-off distar	nce		Body	Spade bolt M10	
Туре	k [mm]	min k [mm]	max k [mm]	X [mm]	T [mm]	L [mm]	l [mm]
SOF 805	50	48	53	115	82	15	55
SOF 806	60	50	63	120	87	25	55
SOF 807	70	65	80	120	87	25	72
SOF 808	80	65	95	127	94	40	72
SOF 810	100	85	115	136	105	60	72
SOF 813	130	115	145	150	117	90	72
SOF 816	160	145	175	164	131	120	72
SOF 819	190	175	205	178	141	150	72

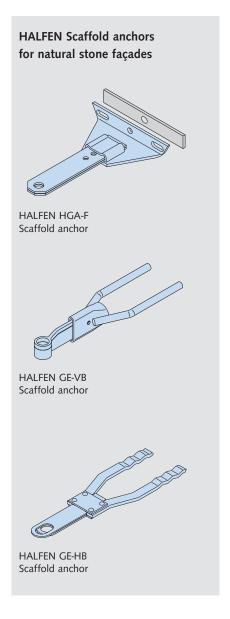
Natural Stone Anchor Accessories

HALFEN Scaffolding anchors

Scaffolding used in the construction industry must be planned in accordance with DIN EN 12810 and DIN EN 12811. These standards include type specific requirements for initial scaffolding for building and also for façade installations and maintenance work. To connect to the supporting structure of the buildings, scaffolding anchors are used which must be technically capable of securing the scaffolding reliably through the thickness of the façade. This is the only safe method to install the insulation and façade elements for the building from the scaffolding.

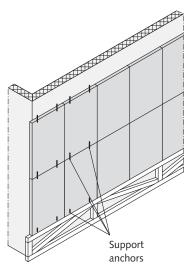
The position, fixing method and load-bearing capacity of the scaffold anchors must be taken into account when planning the façade and included in the building's documentation. The choice of anchors depends on the type of scaffolding selected, the anchor grid

of the scaffolding and the distribution of the joints in the façade. We manufacture the scaffold anchors and also specify the maximum working loads for each anchor both vertically and horizontally to the façade to ensure the required reliability in planning and application.

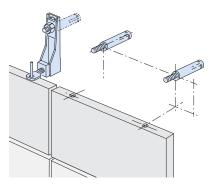

Loads from the scaffold are transferred to the HALFEN Scaffold anchors using reusable straps or ringbolts. HALFEN Scaffold anchors remain in the building after dismantling the scaffold and are concealed so not to disrupt the façade appearance. This ensures that a scaffold can be re-erected later without

> HALFEN GE-HB Scaffolding anchors

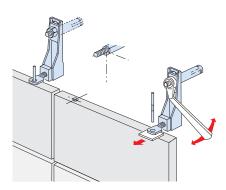
additional anchoring measures. To meet the ever-increasing demands on thermal insulation HALFEN HGA-F Scaffold anchors can be installed with a thermal separation strip between the building and the anchor. The thermal separation strips reduce the heat loss caused by the scaffold anchors and improves the heat transmission efficiency of the building.



Pipe scaffold system



Installation Sequence


Anchoring in horizontal joints

Façade view

Placing the dowels

Installation of the body anchors

Installation direction: from left → right or from right → left

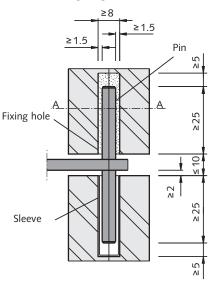
always from **bottom** → **top**

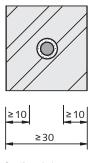
- ► Ensure the façade is measured correctly and tolerances have been considered.
- ► Erect any required scaffolding.
- Cut and remove a section of the thermal insulation to drill the hole for the anchor bolt. The insulation is replaced after anchor installation.
- ► Drill the dowel holes for the first and second row of slabs, ensure correct hole diameter and minimum drill hole depth.
- ▶ Remove all dust from the hole.
- ► Fix and align the lower row of body anchors (support anchors) with approved anchor bolts i.e. HALFEN HB-BZ.

Note: Always use the supplied washer when using HALFEN Bolts or HALFEN Dowels to attach the HALFEN DH Body anchor to the main load bearing structure.

- ► Replace the previously removed thermal insulation.
- Fill the pin holes above the anchor with mortar.
- ► Place the first row of slabs onto the support anchors.
- ► Fix and align the support anchors for the second row of slabs with approved anchor bolts i.e. HALFEN HB-BZ.
- ► Make any fine adjustments to the first row of slabs: allow at least a 2 mm gap between the top edge of the lower row of façade slabs and the bottom edge of the arm of the support anchor for the second slab row (see detail).
- Push the anchor pin through the hole in the spade bolt and into the sleeve in the slab below.
- Dimensions acc. to the detail
 "Pin, fixing hole and joint dimensions [mm]" (see right) must be observed!
- ► The second row of slabs is then installed and the procedure repeated.

Note:

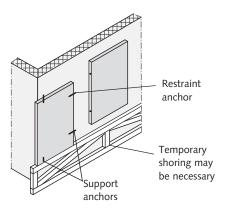

Natural stone slabs are generally fixed at four points.
Thermal insulation should be cut out before drilling the fixing holes.

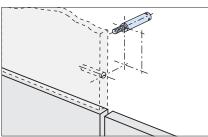

Important: Tighten all co

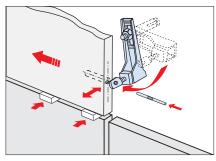
Tighten all countersink screws and anchor bolts using a torque wrench adjusted to the correct torque!

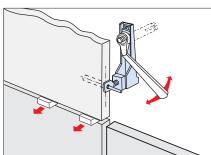
Detail

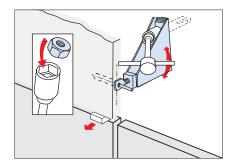
Pin, fixing hole and joint dimensions [mm]

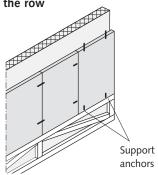





Section A-A


Installation Sequence


Anchoring in vertical joints


Installation starts from building edge, left to right or right to left

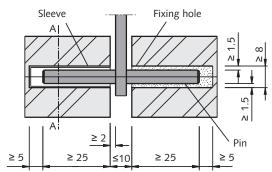
Example installation direction: from left → right always from bottom → top

- ► Ensure the façade is correctly measured and tolerances have been considered.
- ► Erect any required scaffolding.
- Cut and remove a section of the thermal insulation to drill the hole for the anchor bolt. The insulation is replaced after anchor installation.
- Drill the dowel holes for the support and restraint anchors; ensure correct minimum drill hole depth and diameter.
- ▶ Remove all dust from the hole.
- ► Fix and align the body anchors (support and restraint anchors) with approved anchor bolts i.e. HALFEN HB-BZ. Note: Always use the supplied washer when using HALFEN Bolts or HALFEN Dowels to attach the HALFEN DH Body anchor to the main load bearing structure.
- Replace the previously removed thermal insulation.
- Place the natural stone slab on the first support anchor and place a wedge under the right edge.
- ► Fix support and restraint anchor for the first vertical joint with approved anchor bolts i.e. HALFEN HB-BZ, and make any fine adjustments.
- ► Push the anchor pins through the holes in the spade bolts.
- ► Fill the lower fixing holes (support anchor) of the second natural stone slab

- with mortar.
- ▶ Push the second natural stone slab against the first slab.
- Dimensions acc. to the detail below "Pin, fixing hole and joint dimensions [mm]" must be observed!
- ► Fix the support and the restraint anchors for the second vertical joint; then finely adjust the slab; repeat the procedure for the next anchors.

Installation of the last natural stone slab of the row

- ► Anchor the penultimate slab using single-head pins inserted in the right hand vertical panel edge.
- ► The last panel at the right-hand edge of the building is installed on two support anchors in the horizontal joint.



Important:

Tighten all countersink screws and anchor bolts with the correct torque!

Detail:

Pin, fixing hole and joint dimensions [mm]

© 2020 · FS 18-E · www.halfen.com

Design Fundamentals

Construction details from DIN 18 516, section 3

Anchor pins

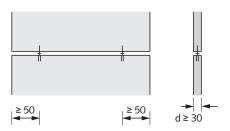
The anchor pins extend into the holes drilled for the pins in the edges of the slabs. The holes are approximately 3 mm larger than the diameter of the pins.

Anchor material

Anchors and pins must be of stainless steel corrosion resistant class III material, according to EN 1993-1-4: 2015. For detailed steel material specifications see page 2.

Edge distances

The standard distance from the corner of the panel to the centre of the hole is 50 mm.


The thickness of the panel from the hole to the panel face must not be less than 10 mm (see section A-A on page 24).

Minimal thickness of panel ≥ 30 mm.

Concrete anchoring substrate

Where the load-bearing structures are heavily reinforced and highly stressed, for example reinforced concrete columns or lintels, the type and location of the anchors should be specified in cooperation with the structural engineer.

Anchors connected to HALFEN Cast-in channels must be installed in accordance with the approval for HALFEN HTA Channels.

For further details refer to DIN 18516. section 3 and our installation instructions.

Design and calculation

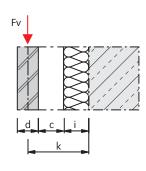
The planning of natural stone anchor fixings is based on the details shown in figures a) to e). This allows fast and accurate installation to ensure cost effective fixing of natural stone panels.

a) Weights of natural stone panels

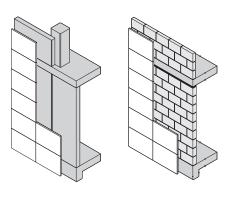
Material	g [kN/m³]
Ceramic, volcanic stone	20
Limestone compositions, Travertine	24
Sandstone, ophiolite, greywacke	26
Limestone, dolomite, shell marl, marble	27
Granite, porphyry, syenite, slate	28
Basalt, diorite, gabbro, gneiss	30

Calculating the panel weight:

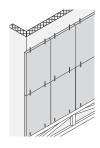
Panel weight:


 $F_V = b [m] \times h [m] \times d [m] \times g [kN/m^3]$

b) Dimensions of natural stone


width b height h thickness d

c) Wall section


- d = thickness of natural stone panels
- c = size of ventilation gap
- i = thickness of thermal insulation
- k = stand-off installation distance of natural stone anchor

d) Anchoring in concrete or masonry structures

e) Installation of natural stone anchors in vertical or horizontal joints

Tender Specifications/Examples

HALFEN Grout-in anchor type UMA 16

HALFEN UMA Grout-in anchor,

support anchor for connecting façade elements made of natural stone or concrete for grouting into concrete ≥ C12/15 or masonry M12/IIa.

For use in horizontal or vertical joints in façades,

type tested,

with TÜV/LGA certification of quality,

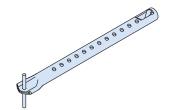
Type UMA 16-D-L-A4

with

16 = anchor diameter 16 mm,

D = design alternative

(1 = 1 with loose pin and sliding sleeve, 2 = with press-fit half-pin)


L = anchor length (120 / 150 / 180 / 210 / 240 / 270 mm)

A4 = stainless steel, corrosion resistance class (CRC) III

acc. to EN 1993-1-4: 2015-10, Table A.3

or equivalent; deliver and install according to manufacturer's instructions.

number of items required item price total

HALFEN Body anchor type BA 1308

HALFEN BA Body anchor,

support anchor for connecting façade elements made of natural stone or concrete to HALFEN Cast-in channels

or to approved HALFEN Dowels (both ordered separately),

for use in horizontal or vertical joints in façades,

with TÜV/LGA certification of quality,

Type BA 1308-D-A4

with

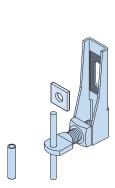
1308 = permitted load F_V = $1300\,N$, with a stand-off installation k = $80\,mm$

D = design alternative

(1 = with loose pin and sliding sleeve, 2 = with press-fit half-pin)

A4 = stainless teel, corrosion resistance class (CRC) III

acc. to EN 1993-1-4: 2015-10, Table A.3


or equivalent; deliver and install according to manufacturer's instructions.

number of items required item price total

Tender specifications on the Internet

Further tender specifications can be found at www.halfen.de/Service/Tender texts. Or just scan the QR code. Tender texts are only available in German.

Worldwide contacts for Leviat:

Australia

Leviat

98 Kurrajong Avenue, Mount Druitt Sydney, NSW 2770 Tel: +61 - 2 8808 3100 Email: info.au@leviat.com

Austria

Leviat

Leonard-Bernstein-Str. 10 Saturn Tower, 1220 Wien Tel: +43 - 1 - 259 6770 Email: info.at@leviat.com

Belaium

Leviat

Borkelstraat 131 2900 Schoten Tel: +32 - 3 - 658 07 20 Email: info.be@leviat.com

China

Leviat

Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing · P.R. China 100020 Tel: +86 - 10 5907 3200 Email: info.cn@leviat.com

Czech Republic

Leviat

Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5 Tel: +420 - 311 - 690 060 Email: info.cz@leviat.com

Finland

Leviat

Vädursgatan 5 412 50 Göteborg / Sweden Tel: +358 (0)10 6338781 Email: info.fi@leviat.com

France

Leviat

18, rue Goubet 75019 Paris

Tel: +33 - 1 - 44 52 31 00 Email: info.fr@leviat.com

Germany

Leviat

Liebigstrasse 14 40764 Langenfeld Tel: +49 - 2173 - 970 - 0 Email: info.de@leviat.com

India

Leviat

309, 3rd Floor, Orion Business Park Ghodbunder Road, Kapurbawdi, Thane West, Thane, Maharashtra 400607 Tel: +91 - 22 2589 2032 Email: info.in@leviat.com

Italy

Leviat

Via F.Ili Bronzetti 28 24124 Bergamo Tel: +39 - 035 - 0760711 Email: info.it@leviat.com

Malaysia

Leviat

28 Jalan Anggerik Mokara 31/59 Kota Kemuning, 40460 Shah Alam Selangor Tel: +603 - 5122 4182 Email: info.my@leviat.com

Netherlands

Leviat

Oostermaat 3 7623 CS Borne Tel: +31 - 74 - 267 14 49 Email: info.nl@leviat.com

New Zealand

Leviat

2/19 Nuttall Drive, Hillsborough, Christchurch 8022 Tel: +64 - 3 376 5205 Email: info.nz@leviat.com

Norway

Leviat

Vestre Svanholmen 5 4313 Sandnes Tel: +47 - 51 82 34 00 Email: info.no@leviat.com

Philippines

Leviat

2933 Regus, Joy Nostalg, ADB Avenue Ortigas Center Pasig City

Tel: +63 - 2 7957 6381 Email: info.ph@leviat.com

Poland

Leviat

UI. Obornicka 287 60-691 Poznań Tel: +48 - 61 - 622 14 14 Email: info.pl@leviat.com

Singapore

Leviat

14 Benoi Crescent Singapore 629977 Tel: +65 - 6266 6802 Email: info.sg@leviat.com

Spain

l evia

Polígono Industrial Santa Ana c/ Ignacio Zuloaga, 20 28522 Rivas-Vaciamadrid Tel: +34 - 91 632 18 40 Email: info.es@leviat.com

Sweden

Leviat

Vädursgatan 5 412 50 Göteborg Tel: +46 - 31 - 98 58 00 Email: info.se@leviat.com

Switzerland

Leviat

Hertistrasse 25 8304 Wallisellen Tel: +41 - 44 - 849 78 78 Email: info.ch@leviat.com

United Kingdom

Leviat

A1/A2 Portland Close Houghton Regis LU5 5AW Tel: +44 - 1582 - 470 300 Email: info.uk@leviat.com

United States of America

Leviat

6467 S Falkenburg Rd. Riverview, FL 33578 Tel: (800) 423-9140 Email: info.us@leviat.us

For countries not listed

Email: info@leviat.com

Leviat.com

For information on certified management systems and standards see www.ancon.co.uk | www.aschwanden.com | www.halfen.com

Notes regarding this catalogue