

HALFEN HSD SHEAR DOWEL SYSTEM Technical Product Information

Acc. to EN 1992-1-1:2008

We are one team. We are Leviat.

Leviat is the new name of CRH's construction accessories companies worldwide.

Under the Leviat brand, we are uniting the expertise, skills and resources of HALFEN and its sister companies to create a world leader in fixing, connecting and anchoring technology.

The products you know and trust, including the HALFEN HSD Shear dowel system, will remain an integral part of Leviat's comprehensive brand and product portfolio. As Leviat, we can offer you an extended range of specialist products and services, greater technical expertise, a larger and more agile supply chain and better, faster innovation.

By bringing together CRH's construction accessories family as one global organisation, we are better equipped to meet the needs of our customers, and the demands of construction projects, of any scale, anywhere in the world.

This is an exciting change. Join us on our journey.

Read more about Leviat at Leviat.com

Our product brands include:

Imagine. Model. Make.

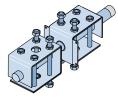

Leviat.com

Table of contents

HALFEN HSD-CRET heavy duty shear dowels

Introduction:	
- Basics - Expansion joints to prevent constraint stresses	3 - 4
Product features:	
- Technical data	5
- Type selection, dimensions	6
Relevant dimensioning resistances:	
- HSD-CRET Shear dowels with longitudinal movement	7
- HSD-CRET V Shear dowels with longitudinal and trans	verse movement 8
In situ reinforcement:	
- Stirrup arrangement	9 - 10
- Design example slab	11 - 12
- Design example beam	13 - 14
Fire protection	
- HSD-F Fire protection pad	15
Assembling references	16

HALFEN HSD single shear dowels

-	Product features	17
-	Dimensioning	18 - 20
-	Assembling references	21

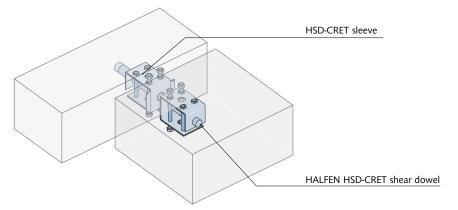
HALFEN HSD shear dowel system

-	Submission and software	22
-	Addresses HALFEN worldwide	23

Introduction

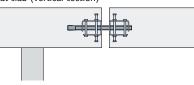
Expansion joints to prevent constraint stresses

The effects of

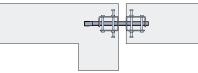

- shrinkage
- temperature
- creep in case of post-tensioning
- subsidence

require constructive measures in large supporting frameworks.

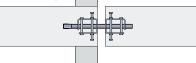
Movement joints prevent the uncontrolled formation of cracks and the subsequent damage that arises from this as a result of leakage and corrosion.

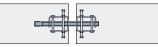

Advantages of the HALFEN shear dowel system:

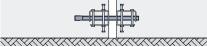
- simple geometry of the formation of the joint
- simple formwork and time saving installation
- simple reinforcement layout
- gain in space through avoidance of double supports
- cost saving and gain in space through staged erection of the construction elements
- approved in several European countries
- user-friendly HSD dimensioning software available in the Internet www.halfen.(→ country code)
- fire resistance classification F120 designable with fire protection pads (see page 15)

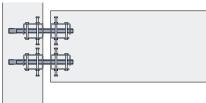


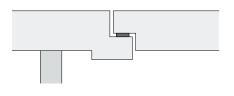
The solution: the HALFEN HSD Shear dowel system

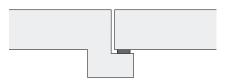

Flat slab (vertical section)

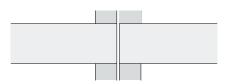

Slab connection with console (vertical section)

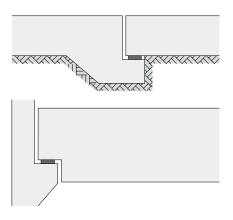

Double column replaced by a single column (vertical section)

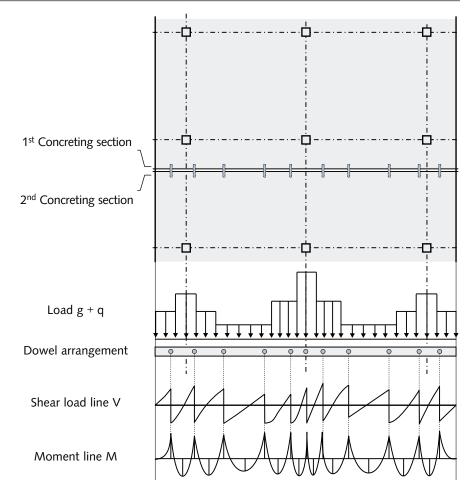

Connection of a supporting wall (horizontal section)


Expansion joint in floor slab (vertical section)

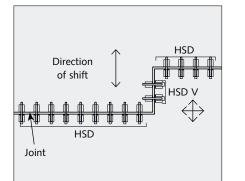



Connection between beam / support (vertical section)


Conventional: problems with conventional design

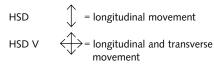

Dimensioning

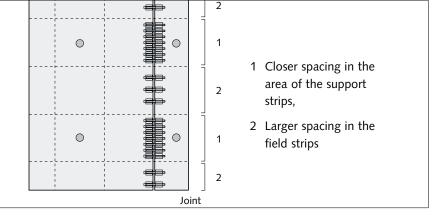
Expansion joints to prevent constraint stresses


For flat slabs, it is advisable to arrange the dowels at different spacings according to the different shear load concentrations. The value and the distribution of the shear load to be transmitted can be determined by a finite elements slab calculation. The static model of a continuous beam is suitable for the dimensioning of the edge of the slab. Shear and bending moments will be used for the dimensioning of the reinforcement across and along the edge. It must thereby be noted that transverse and longitudinal reinforcement is also required in the load introduction area of the dowel, which could be decisive against those from the continuous beam calculation. With large dowel spacings, the continuous beam calculation is normally the decisive value for the longitudinal reinforcement.

Dimensioning of the joint width

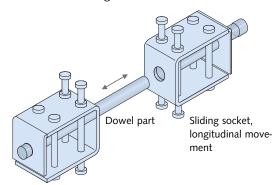
f = calculated joint width + safety supplement (approx. 1cm)




Arrangement of the shear dowel - Examples

Angled joint run

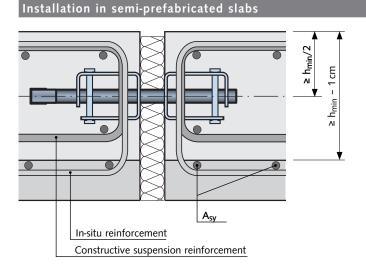
Shifting direction of the shear dowels:


Flat slab joint; dowel arrangement corresponding to the support model for the slab

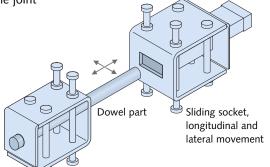
Heavy-duty shear dowels

Product description

HSD-CRET heavy-duty shear dowel


consisting of dowel part and sliding socket, single-axis movement - along the dowel axis

HALFEN HSD-CRET heavy-duty shear dowels allow a sliding movement in the direction of the dowel axis. The dowels are normally used to transfer shear loads in any direction. A high load capacity is effectuated by the load distribution body.


Technical data

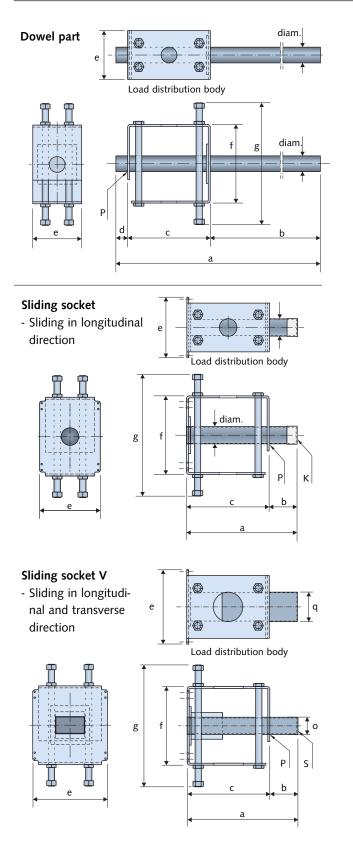
Dowel diameter and minimum component thickness									
HSD-	HSD-	Dowel diameter [mm]	Minimum component thickness h _{min} [cm]						
CRET 122	CRET 122 V	22	18						
CRET 124	CRET 124 V	24	20						
CRET 128	CRET 128 V	28	24						
CRET 134	CRET 134 V	34	30						
CRET 140	CRET 140 V	40	35						
CRET 145	CRET 145 V	45 · 45 ¹⁾	42						
CRET 150	CRET 150 V	50 · 50 ¹⁾	60						
CRET 155	CRET 155 V	55 · 55 ¹⁾	65						
¹⁾ Square shap	ed cross sectior	1							

HSD-CRET V heavy-duty shear dowel

consisting of dowel part and sliding socket, two-axis movement – along the dowel axis and parallel to the joint

If lateral movements must be considered, the HALFEN HSD-CRET V heavy-duty shear dowel is used, which allows also lateral movement. In this case, the shear load will only be transferred in one direction.

Materials:


- dowels HSD CRET 122-140: stainless steel S 690 (grade 1.4462)
- dowels HSD CRET 145-155: (grade 1.7225)
- load distribution body and sliding socket: Stainless steel S 275 (grade 1.4404)
- fixing rod: Stainless steel, strength class 70 (grade 1.4401)
- All materials correspond to at least the corrosion-resistance class III.

Recommendation:

- Insertion of constructive suspension reinforcement in the semi-prefabricated slab (dimensioning for $V_{Rd}/3$).
- Thickness of the in-situ cast concrete = h_{min} 1 cm.
- Dimension between the shear dowel axis and upper edge of the in-situ concrete = $h_{min}/2$.
- With a sufficient thickness of the in-situ concrete, the reinforcement A_{sy} can also be placed outside the semi-prefabricated slab.
- In-situ reinforcement (A_{sx} and A_{sy} top) is to be arranged according to the tables on pages 9 to 10 and/or the approval.

Heavy-duty shear dowels

Type selection

Dimensions [mm]											
HSD	-CRET type	a	b	с	d	е	f	g	diam.	0	q
2 <	dowel part	302	180	108	14	70	80	140	22	-	-
2 / 122	socket	180	72	108	-	100	80	140	25.4	-	-
122 /	socket V	181.5	73.5	108	-	125	80	140	-	26	50
4 <	dowel part	341	192	133	16	76	90	160	24	-	-
124 / 124 V	socket	192	59	133	-	106	90	160	28	-	-
124	socket V	193.5	60.5	133	-	133	90	160	-	28	55
8	dowel part	388	215	155	18	88	110	200	28	-	-
3 / 128 V	socket	215	60	155	-	118	110	200	32	-	-
128 /	socket V	217	62	155	-	146	110	200	-	32	60
4 <	dowel part	450	246	180	24	106	160	260	34	-	-
134 / 134 V	socket	246	66	180	-	136	160	260	38	-	-
134	socket V	248	68	180	-	168	160	260	-	38	78
> 0	dowel part	520	280	210	30	124	200	310	40	-	-
140 / 140 V	socket	280	70	210	-	154	200	310	44	-	-
14(socket V	281.5	71.5	210	-	190	200	310	-	44	75
5 <	dowel part	546	302	210	34	124	250	380	45 ¹⁾	-	-
145 / 145 V	socket	309	99	210	-	154	250	380	-	-	-
14	socket V	309	99	210	-	194	250	380	-	49	90
> 0	dowel part	609	335	210	64	160	300	560	50 ¹⁾	-	-
150 / 150 V	socket	337	127	210	-	190	300	560	-	-	-
15(socket V	337	127	210	-	230	300	560	-	54	95
5V	dowel part	667	363	230	74	200	350	610	55 ¹⁾	-	-
155 / 155V	socket	365	135	230	-	230	350	610	-	-	-
15	socket V	365	135	230	-	270	350	610	-	59	100
Dov	vels 145/14	5 V, 15	0/150	V and	155,	/155 \	/ have	square	shape	d cr	oss

Dowels 145/145 V, 150/150 V and 155/155 V have square shaped cross sections ¹⁾ edge length of cross section

Ordering example:

HSD-CRET 124 V

HALFEN heavy-duty shear dowel ______ Load range _____

V = Transverse <u>and</u> longitudinal movement

P = Spot welding

K = PE pipe protection cap

S = Sheet metal cover

Heavy-duty shear dowels

Dimensioning

Ultimate limit state:

$V_{Rd} = \min (V_{Rd,1}; V_{Rd,2}; V_{Rd,max}) \le V_{Rd,s}$	V _{Rd,s} Load capacity of the additional slab border reinforcement
V _{Rd,1} Design resistance of the steel dowel V _{Rd,2} Design resistance of the steel	$V_{Ed} \leq V_{Rd}$ (with consideration of friction factor f_{μ}) If a dowel will be selected from these tables, no further proofs are required.
box V _{Rd,max} Load capacity of the con- crete compression struts	The values quoted for the maximum dimensioning resistance V_{Rd} only apply for an arrangement of the suspension reinforcement according to the table on page 9.
Dimensioning of the joint width f f = calculated joint width + safety supplement (approx. 1cm)	 V_{Ed} = design load on the shear dowel with partial safety factors acc. EN 1992-1-1:2008. f_μ = Friction factor (1.0 for dowels with longitudinal movement) (0.9 for dowels with longitudinal and transverse movement)

	Component			C20)/25		C25/30						
Shear dowel	Component thickness			Joint wid	th f [mm]			Joint width f [mm]					
	[mm]	≤ 10	20	30	40	50	60	≤ 10	20	30	40	50	60
	180	54.9	54.9	54.9	54.9	53.2	44.4	68.6	68.6	68.6	66.6	53.2	44.
	200	61.3	61.3	61.3	61.3	53.2	44.4	76.6	76.6	76.6	66.6	53.2	44.
-	220	67.6	67.6	67.6	66.6	53.2	44.4	84.5	84.5	81.8	66.6	53.2	44.
HSD-CRET-122	240	74.0	74.0	74.0	66.6	53.2	44.4	92.5	92.5	81.8	66.6	53.2	44.
-	250	77.2	77.2	77.2	66.6	53.2	44.4	96.5	96.5	81.8	66.6	53.2	44.
	260	80.4	80.4	80.4	66.6	53.2	44.4	100.5	98.2	81.8	66.6	53.2	44.
	≥280	86.8	86.8	81.8	66.6	53.2	44.4	108.5	98.2	81.8	66.6	53.2	44.
- 	200	79.8	79.8	79.8	79.8	69.1	57.6	99.7	99.7	99.7	86.4	69.1	57.
	220	87.7	87.7	87.7	86.4	69.1	57.6	109.7	109.7	108.8	86.4	69.1	57.
	240	95.7	95.7	95.7	86.4	69.1	57.6	119.6	119.6	108.8	86.4	69.1	57.
	250	99.7	99.7	99.7	86.4	69.1	57.6	124.6	124.6	108.8	86.4	69.1	57.
	260	103.7	103.7	103.7	86.4	69.1	57.6	129.6	125.6	108.8	86.4	69.1	57.
	≥280	111.7	111.7	108.8	86.4	69.1	57.6	139.6	125.6	108.8	86.4	69.1	57.
	240	121.0	121.0	121.0	121.0	109.8	91.5	151.2	151.2	147.9	130.2	109.8	91.
-	250	125.6	125.6	125.6	125.6	109.8	91.5	157.0	157.0	147.9	130.2	109.8	91.
	260	130.3	130.3	130.3	130.2	109.8	91.5	162.8	162.8	147.9	130.2	109.8	91.
HSD-CRET-128	280	139.6	139.6	139.6	130.2	109.8	91.5	174.5	169.1	147.9	130.2	109.8	91.
	300	148.9	148.9	147.5	130.2	109.8	91.5	186.1	169.1	147.9	130.2	109.8	91.
	≥320	158.2	158.2	147.5	130.2	109.8	91.5	188.2	169.1	147.9	130.2	109.8	91.
	300	202.9	202.9	202.9	197.0	175.5	162.7	253.6	239.7	219.3	198.2	175.7	162
HSD-CRET-134	≥320	213.8	213.8	213.8	197.0	175.5	162.7	259.5	239.7	219.3	198.2	175.7	162
	350	290.4	290.4	290.4	290.4	263.0	250.2	363.0	347.0	320.8	293.2	263.1	250
	360	296.8	296.8	296.8	291.9	263.0	250.2	370.9	347.0	320.8	293.2	263.1	250
HSD-CRET-140	380	309.4	309.4	309.4	291.9	263.0	250.2	372.1	347.0	320.8	293.2	263.1	250
	≥400	322.0	322.0	317.9	291.9	263.0	250.2	372.1	347.0	320.8	293.2	263.1	250

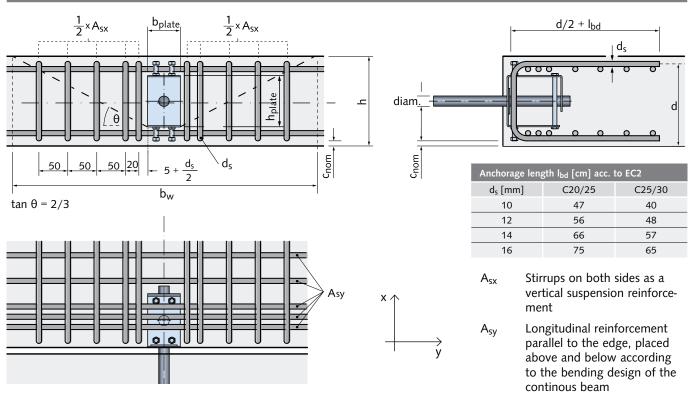
With partial safety factors: $\gamma_s = 1.15$ EN 1992-1-1:2008; $\gamma_c = 1.5$ EN 1992-1-1:2008; $\gamma_{M0} = 1.0$ EN 1993-1-1; $\gamma_{M2} = 1.25$ EN 1993-1-8

Dimensioning resistances for HSD-CRET 145, HSD-CRET 150 and HSD-CRET 155 available on request. Adresses → page 23

Heavy-duty shear dowels

Dimensioning

$V_{Rd} = \min (V_{Rd,1}; V_{Rd,2}; V_{Rd,max}) \le V_{Rd,s}$	V _{Rd,s} Load capacity of the additional slab border reinforcement
V _{Rd,1} Design resistance of the steel dowel V _{Rd,2} Design resistance of the steel	$V_{Ed} \leq V_{Rd}$ (with consideration of friction factor f _µ) If a dowel will be selected from these tables, no further proofs are required.
V _{Rd,max} load capacity of the concrete compression struts	The values quoted for the maximum dimensioning resistance V_{Rd} only apply for an arrangement of the suspension reinforcement according to the table on page 9.
Dimensioning of the joint width f f = calculated joint width + safety supplement (approx. 1cm)	 V_{Ed} = design load on the shear dowel with partial safety factors acc. EN 1992-1-1:2008. f_μ = Friction factor (1.0 for dowels with longitudinal movement) (0.9 for dowels with longitudinal and transverse movement)


	Component		C20/25							C25/30						
Shear dowel	thickness	Joint width f [mm]							Joint width f [mm]							
	[mm]	≤ 10	20	30	40	50	60	≤ 10	20	30	40	50	60			
	180	54.9	54.9	54.9	54.9	47.9	39.9	68.6	68.6	68.6	59.9	47.9	39.			
	200	61.3	61.3	61.3	59.9	47.9	39.9	76.6	76.6	76.6	59.9	47.9	39			
	220	67.6	67.6	67.6	59.9	47.9	39.9	84.5	84.5	79.4	59.9	47.9	39			
ISD-CRET-122 V	240	74.0	74.0	74.0	59.9	47.9	39.9	92.5	92.5	79.4	59.9	47.9	39			
	250	77.2	77.2	77.2	59.9	47.9	39.9	96.5	93.1	79.4	59.9	47.9	39			
	260	80.4	80.4	79.4	59.9	47.9	39.9	100.5	93.1	79.4	59.9	47.9	39			
	≥280	86.8	86.8	79.4	59.9	47.9	39.9	108.5	93.1	79.4	59.9	47.9	39			
HSD-CRET-124 V	200	79.8	79.8	79.8	77.8	62.2	51.8	99.7	99.7	99.7	77.8	62.2	51			
	220	87.7	87.7	87.7	77.8	62.2	51.8	109.7	109.7	101.4	77.8	62.2	51			
	240	95.7	95.7	95.7	77.8	62.2	51.8	119.6	119.6	101.4	77.8	62.2	51			
	250	99.7	99.7	99.7	77.8	62.2	51.8	124.6	119.0	101.4	77.8	62.2	51			
	260	103.7	103.7	101.4	77.8	62.2	51.8	129.6	119.0	101.4	77.8	62.2	51			
	≥280	111.7	111.7	101.4	77.8	62.2	51.8	139.6	119.0	101.4	77.8	62.2	51			
	240	121.0	121.0	121.0	121.0	98.8	82.3	151.2	151.2	138.5	123.4	98.8	82			
	250	125.6	125.6	125.6	123.4	98.8	82.3	157.0	157.0	138.5	123.4	98.8	82			
	260	130.3	130.3	130.3	123.4	98.8	82.3	162.8	162.2	138.5	123.4	98.8	82			
ISD-CRET-128 V	280	139.6	139.6	138.4	123.4	98.8	82.3	174.5	162.2	138.5	123.4	98.8	82			
	300	148.9	148.9	138.4	123.4	98.8	82.3	182.6	162.2	138.5	123.4	98.8	82			
	≥320	158.2	158.2	138.4	123.4	98.8	82.3	182.6	162.2	138.5	123.4	98.8	82			
	300	202.9	202.9	202.9	185.6	162.7	147.4	251.8	231.1	209.5	186.5	162.7	14			
ISD-CRET-134 V	≥320	213.8	213.8	207.6	185.6	162.7	147.4	251.8	231.1	209.5	186.5	162.7	14			
	350	290.4	290.4	290.4	275.6	250.2	240.0	361.1	334.6	306.6	276.2	250.2	240			
	360	296.8	296.8	296.8	275.6	250.2	240.0	361.1	334.6	306.6	276.2	250.2	240			
ISD-CRET-140 V	380	309.4	309.4	304.5	275.6	250.2	240.0	361.1	334.6	306.6	276.2	250.2	240			
	≥400	322.0	322.0	304.5	275.6	250.2	240.0	361.1	334.6	306.6	276.2	250.2	24			

With partial safety factors: γ_s = 1.15 EN 1992-1-1:2008; γ_c = 1.5 EN 1992-1-1:2008; γ_{M0} = 1.0 EN 1993-1-1; γ_{M2} = 1.25 EN 1993-1-8

Dimensioning resistances for HSD-CRET 145 V, HSD-CRET 150 V and HSD-CRET 155 V available on request. Advesses \rightarrow page 23

Heavy-duty shear dowels

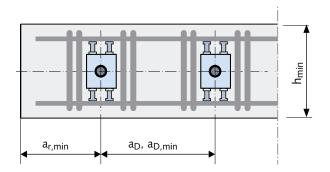
In-situ reinforcement

Number of	stirrup	os A _{sx}	(f _{yk} = !	500 M	Pa)															
	CRET-122(V) CRET-124(V) CRET-128(V)							CRET-	134(V)		CRET-140(V)									
h [mm]	stirrup diameter ds [mm]																			
	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16	10	12	14	16
180	6	4	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
200	6	4	2	2	8	4	4	2	-	-	-	-	-	-	-	-	-	-	-	-
220	6	4	4	2	8	6	4	2	-	-	-	-	-	-	-	-	-	-	-	-
240	6	4	4	2	8	6	4	2	10	6	4	4	-	-	-	-	-	-	-	-
250	6	4	4	2	8	6	4	2	10	6	4	4	-	-	-	-	-	-	-	-
260	6	4	4	2	8	6	4	4	10	6	4	4	-	-	-	-	-	-	-	-
280	6	4	4	2	8	6	4	4	10	6	4	4	-	-	-	-	-	-	-	-
300	6	4	4	2	8	6	4	4	10	6	4	4	-	10	6	4	-	-	-	-
320	6	4	4	2	8	6	4	4	10	6	4	4	-	10	6	4	-	-	-	-
340	6	4	4	2	8	6	4	4	10	6	4	4	-	10	6	4	-	-	-	-
350	6	4	4	2	8	6	4	4	10	6	4	4	-	10	6	4	-	-	8	6
360	6	4	4	2	8	6	4	4	10	6	4	4	-	10	6	4	-	-	8	6
380	6	4	4	2	6	4	4	4	10	6	4	4	-	10	6	4	-	-	8	6
400					6	4	4	2	8	6	4	4	-	8	6	4	-	-	8	6
420									8	6	4	4	-	8	6	4	-	-	8	6
440									8	6	4	4	-	8	6	4	-	-	8	6
450													-	8	6	4	-	-	8	6
460													-	8	6	4	-	-	8	6
480													-	8	6	4	-	-	8	6
500													10	8	6	4	-	-	8	6
520																	-	10	8	6
540																	-	10	8	6

Advice: The reinforcement layout in the above table can be used for all cases in the load tables pages 7-8. 50% of the stirrups from the above table have to be placed on each side of the dowel.

Heavy-duty shear dowels

HALFEN Dimensioning Software


For an optimised suspension reinforcement, please use the HSD-CRET design program, downloadable from: www.halfen.(→ country code) If required, a DVD with all design programs, catalogues and approvals is also available.

Installation dimensions

Minimum spacings										
HSD- CRET-	HSD- CRET-	Minimum compo- nent thickness h _{min} [cm]	Minimum dowel spacing a _{D,min}	Minimum edge distance a _{r,min}						
122	122 V	18								
124	124 V	20								
128	128 V	24								
134	134 V	30	V _{Ed,i}	$\frac{1}{2} \cdot \frac{V_{Ed,i}}{V_{Rd,c}}$						
140	140 V	35	V _{Rd,c}	2 VRd,c						
145	145 V	42								
150	150 V	60								
155	155 V	65								

In order to obtain a linear support, it is recommended that the centre spacing of the dowels should not be above the limit of $10 \cdot h$. The optimum is $5 \cdot h$.

Calculation acc. to EN 1992-1-1:2008 (section 6)

V_{Rd} acc. page 7 - 8

 $v_{Rd,c} = (C_{Rd,c} \cdot k \cdot (100 \cdot \rho_L \cdot f_{ck})^{\frac{1}{3}} + k_1 \cdot \sigma_{cp}) \cdot d \quad [kN/m] (6.2a)$

with a minimum of:

$v_{Rd,c} = (v_{min} + k_1 \cdot \sigma_{cp}) \cdot d$	(6.2b)
$v_{min} = 0.035 \cdot k^{\frac{3}{2}} \cdot \sqrt{f_{ck}}$	(6.3)

hmin acc. adjacent table

where: $\rho_L = \frac{A_{sx}}{b_w \cdot d}$

$$b_w$$
 = width of the concrete cone
= $b_{plate} + \frac{3}{2} (h + h_{plate})$

A_{sx} acc. page 9 [mm²]

If $a_D < 2 \cdot h_{min}$, the design resistance V_{Rd} (acc. pages 7 and 8) has to be reduced by the quotient of : $a_D / a_{D,min}$, **only** if $V_{Rd,max}$ is the determinant resistance.

a _D	= centre spacing between the dowels

a_{D,min} = minimum dowel spacing

 $a_{r,min}$ = minimum edge spacing

() If $a_D < a_{D,min}$, shear reinforcement has to be provided in the slab

coefficient:	$C_{Rd,c} = 0,18/\gamma_c = 0,12$	
	/200	

size factor: $k = 1 + \sqrt{\frac{200}{d}} \le 2$ mit d in mm

coefficient: $k_1 = 0,10$

compressive concrete stress from axial load or prestressing: σ_{cp}

Heavy-duty shear dowels

Design example - slab

Input

Design shear force: $v_{Ed} = 50 \text{ kN/m}$

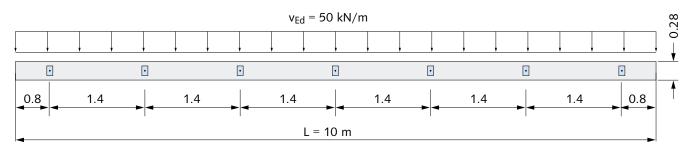
Advice: All calculations of HSD-CRET dowels are done with partial safety factors according to EN 1992-1-1:2008.

Concrete:	C25/30 \rightarrow f _{ck} = 25 MPa, γ_c = 1.5 (EN 1992-1-1:2008)
Concrete cover:	c _{nom} = 30 mm
Slab thickness:	h = 280 mm \rightarrow effective depth d = h - c _{nom} - diam./2 = 245 mm
Advice: Diamete	or of the bending reinforcement perpendicular to the joint (here 10 mm)
Joint length:	L = 10 m
Designed joint wi	dth: f = 30 mm (20 mm + 10 mm)

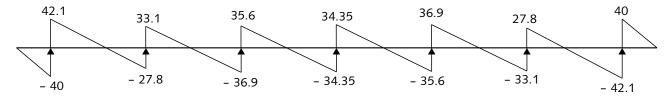
Advice: The designed joint width should be the maximum value that can appear during building utilization. In case of lack of detailed information it is recommended to increase nominal joint width with additional 10 mm.

Number of dowels

Preliminary dowel choice HSD-CRET-124 with parameters:


Load capacity V_{Rd} = 108.8 kN (page 7) Minimum slab thickness h_{min} = 200 mm \leq h	= 280 mm (page 9) \rightarrow condition fulfilled
Sum of loading on the joint: Minimum number of dowels in the joint: Distance between dowels:	$ \begin{array}{l} V_{Ed} = L \cdot v_{Ed} = 10 \cdot 50 = 500 \ kN \\ n_{min} = V_{Ed} \ / \ V_{Rd} = 500 \ / \ 108.8 = 4.59 \ pcs. \rightarrow chosen \ 5 \ dowels \\ a_D = L \ / \ n_{min} = 10 \ / \ 5 = 2.0 \ m \end{array} $

Proof of maximum distance between dowels


Advice: Basis of this proof is the condition that the maximum distance between the dowels should not exceed 5 · h. Although it is a recommended condition, the designer can also define larger maximum distances between the dowels, but should not exceed 10 · h.

Maximum distance between dowels:

 $a_{D,max} = 5 \cdot h = 5 \cdot 0.28 = 1.4 \text{ m} \le a_D = 2.0 \text{ m} \rightarrow \text{it is necessary to increase the number of dowels, because of exceeding } a_{D,max}$ Number of dowels in the joint: $n = L / a_{D,max} = 10 / 1.4 = 7.14 \text{ pcs.}$; chosen 7 dowels with arrangement as on the drawing below

Shear force distribution for continuous beam V_{Ed} [kN]:

max $V_{Ed,i} = 82.1$ kN $\leq V_{Rd} = 108.8$ kN \rightarrow condition fulfilled

Heavy-duty shear dowels

Design example - slab

Additional slab reinforcement

Suspension reinforcement

From the table on page 9 it is taken reinforcement 8 diam. 10 placed as on the drawing beside according to recommendations from page 10.

Advice:	Optimal calculation of the reinforcement can be done with
	the HSD-CRET design program.

Longitudinal reinforcement

Longitudinal reinforcement should be calculated acc. to the bending design of a continous beam with support points according to dowel arrangement.

Proof of slab shear capacity and minimum distance between dowels

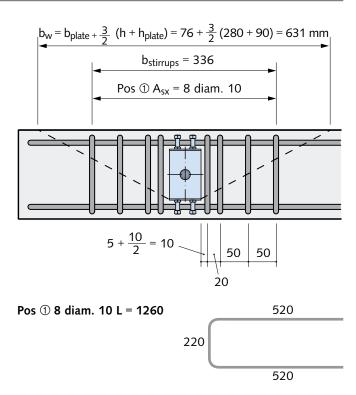
Slab shear capacity v_{Rd,c} (EN 1992-1-1: 2008 sect. 6.2.2)

$$v_{Rd,c} = \left[C_{Rd,c} \cdot k \left(100 \cdot \rho_{I} \cdot f_{ck} \right)^{\frac{1}{3}} + k_{1} \cdot \sigma_{cp} \right] d$$

but not less than $v_{Rd,c} = v_{min} + k_1 \sigma_{cp}$ (EN 1992-1-1:2008, 6.2a and 6.2b)

where: $k = 1 + \sqrt{200/d} = 1 + \sqrt{200/245} = 1.90 \le 2.0$

 $C_{Rd,c} = 0.18 / \gamma_c = 0.18 / 1.5 = 0.12$


$$\rho_{\mathsf{L}} = \frac{\mathsf{A}_{\mathsf{sx}}}{\mathsf{b}_{\mathsf{w}} \cdot \mathsf{d}} = \frac{628}{631 \cdot 245} = 0.0041 \le 0.02$$

 $k_1 \cdot \sigma_{cp} = 0$; because slab is not pre-stressed

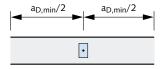
 $v_{min} = 0.035 \ k^{\frac{3}{2}} \cdot f_{ck}^{-\frac{1}{2}} = 0.035 \cdot 1.90^{\frac{3}{2}} \cdot 25^{-\frac{1}{2}} = 0.46$

 $v_{Rd,c} = (0.12 \cdot 1.90 \cdot (100 \cdot 0.0041 \cdot 25)^{\frac{1}{3}} + 0) \cdot 245$ = 121.2 > (0.46 + 0) \cdot 245 = 112.6 kN/m

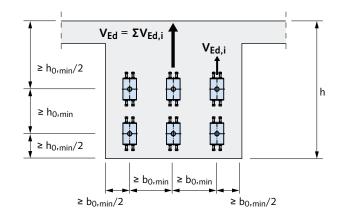
Slab shear capacity $v_{Rd,c} = 121.1 \text{ kN/m}$

Proof of minimum distance between dowels

 $\begin{array}{l} a_{D,min} = V_{Ed,i}/v_{Rd,c} \\ V_{Ed,i}/v_{Rd,c} = 82.1/121.2 = 0.68 \ m \\ a_{D,min} = 0.68 \le a_D = 1.40 \ \rightarrow \mbox{condition fulfilled, no shear} \\ reinforcement required \end{array}$

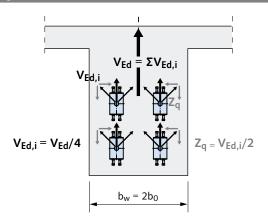

 $a_D = 1.4 \text{ m} > 2 \cdot h_{min} = 2 \cdot 0.2 = 0.4 \text{ m} \rightarrow \text{condition fulfilled}$

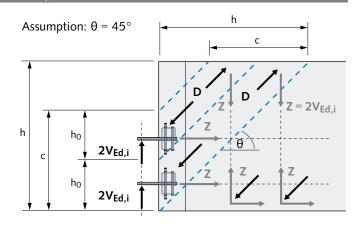
reinforcement ratio $\rho_L = 0.0041$ must be provided in area $a_{D,min}/2$, right and left-hand of the dowel


Proof of minimum edge distance

 $\begin{array}{l} a_{r,min} = a_{D,min}/2 \\ = 0.68/2 \\ = 0.34 \ m \leq a_r \ = 0.80 \ m \rightarrow \mbox{condition fulfilled} \end{array}$

 $h_{min} = 0.2 \text{ m} < a_r = 0.80 \text{ m} \rightarrow \text{condition fulfilled}$


Heavy-duty shear dowels



Minimum dowel distances						
CRET - 122	b _{0,min} = 180 mm	h _{0,min} = 180 mm				
CRET - 124	b _{0,min} = 200 mm	h _{0,min} = 200 mm				
CRET - 128	b _{0,min} = 250 mm	h _{0,min} = 240 mm				
CRET - 134	b _{0,min} = 300 mm	h _{0,min} = 300 mm				
CRET - 140	b _{0,min} = 350 mm	h _{0,min} = 350 mm				
CRET - 145	b _{0,min} = 400 mm	h _{0,min} = 420 mm				
CRET - 150	b _{0,min} = 500 mm	h _{0,min} = 600 mm				
CRET - 155	b _{0,min} = 600 mm	h _{0,min} = 650 mm				

Minimum dimensions of beam-webs and minimum dowel distances

Design of beam connections, strut and tie model (truss theory)

Verification of the shear force load capacity acc. to (EN 1992-1-1: 2005)

V_{Ed} ≤ min (V_{Rd,max}; V_{Rd,s})

 $V_{Rd,max} = \alpha_{cw} \cdot b_w \cdot z \cdot v_1 \cdot f_{cd}/(\cot \theta + \tan \theta)$

where:

 $\alpha_{cw} = 1.0$ $v_1 = 0.6 \cdot [1 - f_{ck}/250]$ $z = 0.9 \cdot d$

design yield strength of the shear reinforcement f_{ywd} spacing of the stirrups S

Reinforcement in the area of force introduction

- Vertical stirrups at the end of the girder, distributed in area c •
- Vertical reinforcement per dowel, U-shaped •
- Vertical reinforcement, face of beam *
- Horizontal transverse reinforcement per dowel row, face of beam •

 $V_{Ed,i} = V_{Ed}/n$ with n = number of dowels

* Advice: Bottom reinforcement has to be calculated for a tension force VEd. And it has to be totally anchored at beam end with hook or loop. Otherwise $A_{sw} = 2 \cdot V_{Ed,i}/f_{vd}$

$V_{Rd,s} = \frac{A_{sw}}{s} z \cdot f_{ywd} \cdot \cot \theta$

- lever arm of internal forces
- Ζ

 $A_{sw} = V_{Ed} \cdot s / (z \cdot f_{ywd} \cdot \cot \theta)$ [Pos 1] $A_{sw} = V_{Ed,i}/f_{vd}$ [Pos 2] $A_{sw} = V_{Ed,i}/f_{yd}$ [Pos 3] $A_{sw} = 0.5 \cdot V_{Ed,i}/f_{yd}$ [Pos 4]

Heavy-duty shear dowels

Design example - beams

Input

Connection beam column, V_{Ed} = 750 kN Choice: 4 × HSD-CRET 134, Concrete C25/30; γ_c = 1.5

 $b_w = 600 \text{ mm}; \text{ h} = 800 \text{ mm}$ d = 760 mm Joint width f = 30 mm

Calculation

 $\begin{array}{l} V_{Rd,i} \mbox{ according table page 7} \rightarrow V_{Rd,i} = 219.3 \mbox{ kN} \\ 4 \cdot V_{Rd,i} = 4 \cdot 219.3 = \textbf{877.2 \mbox{ kN}} > \textbf{750 \mbox{ kN}} = \textbf{V}_{Ed} \end{array}$

Minimum dimensions

min $b_w = 150+300+150 = 600 \text{ mm} \ge b_w = 600 \text{ mm}$ min $h = 150+300+150 = 600 < h_{ef} = 800 \text{ mm}$

Proof of the resistance of the

 $\begin{array}{l} \mbox{compression struts} \\ \alpha_{cw} = 1.0 \\ \nu_1 = 0.6 \cdot [1 - f_{ck}/250] = 0.54 \\ z = 0.9 \cdot d = 0.9 \cdot 760 \mbox{ mm} = 684 \mbox{ mm} \\ \mbox{cot} \ \theta = 1.0; \ tan \ \theta = 1.0 \end{array}$

 $V_{Rd,max} = 1.0 \cdot 600 \cdot 684 \cdot 0.54 \cdot 25/1.5/(1+1) =$

1847 kN > 750 kN = V_{Ed}

Reinforcement

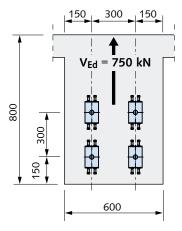
Pos 1

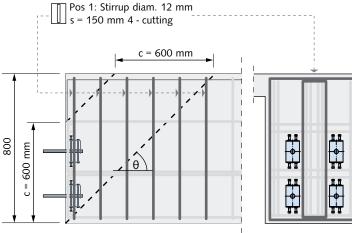
Due to $V_{Rd,s} \ge V_{Ed} \rightarrow req. A_{sw}$ = $V_{Ed} \cdot s/(z \cdot f_{ywd} \cdot \cot \theta)$ = 750 \cdot 10³ \cdot 150/(684 \cdot 435 \cdot 1) = 378 mm² per row

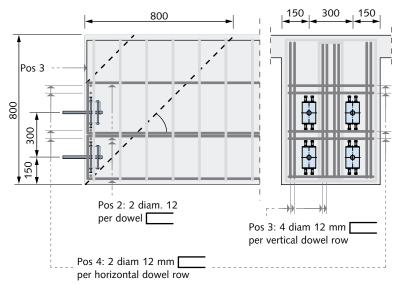
Choice: diam.12, s = 150 mm, 4-cutting, distributed in area c \rightarrow prov. A_{sw} = 452 mm² per row

Pos 2

 $\begin{array}{l} A_{sw} = V_{Ed,i}/f_{yd} = 187.5 \cdot 10^3 \; / \; 435 = 431 \; mm^2 \\ \text{Choice: 2 diam.12 per dowel, U-shaped} \\ \rightarrow prov. \; A_{sw} = 452 \; mm^2 \end{array}$

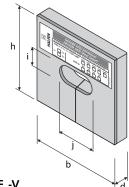

Pos 3


 $\begin{array}{l} A_{sw} = V_{Ed,i}/f_{yd} = 187.5 \cdot 10^3 \ / \ 435 = 431 \ mm^2 \\ \text{Choice: 4 diam.12 per vertical dowel row, U-shaped} \\ \rightarrow prov. \ A_{sw} = 452 \ mm^2 \end{array}$


Pos 4

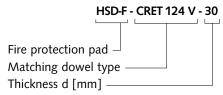
 $A_{sw} = 0.5 \cdot V_{Ed,i}/f_{yd} = 93.8 \cdot 10^3 / 435 = 215 \text{ mm}^2$ Choice: 2 diam.12 per horizontal dowel row, U-shaped → prov. $A_{sw} = 226 \text{ mm}^2$ Pos 1: 4 - cutting Pos 2: 2 - cutting Pos 3: 1 - cutting Pos 4: 1 - cutting

Positions 2 and 3 have to be anchored with I_{bd} outside the area of load introduction (area c)


Fire protection

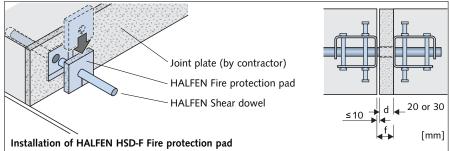
HSD-F Fire protection pad

If fire protection is required for components according to DIN 4102 T.2, we recommend to install the HALFEN HSD Shear dowels with fire protection pads.

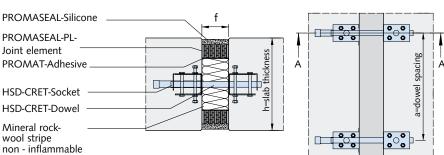


HSD-F for shear dowels HSD, longitudinal movement

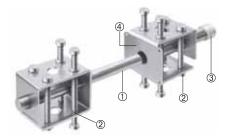
HSD-F -V for shear dowels HSD, longitudinal and transverse movement


Ordering example:

For requirements - smoke tight "enclosure of space" - according DIN EN 1366-4 in combination with DIN EN 1363-1, we recommend to use the joint element **PROMASEAL-PL** (see fig.).


For the combination of HALFEN Shear dowel with PROMASEAL-PL the enclosing design function and the fire resistance classification F90 is confirmed by the MFPA Leipzig. The fire protection pad can be supplied 20 mm (d = 20) and 30 mm (d = 30) thick. For larger joint widths, a combination of fire protection pads is possible.

The fire-resistance classification F120 (longitudinal movement) or F90 (longitudinal and transverse movement) is confirmed by the MFPA Leipzig.


Note: The HSD-F Fire protection pad consists of a material that will produce foam in case of a fire and will tightly seal the joint.

Fire protection pad selec	tion			
matching the HALFEN HSD Shear dowel -	$\begin{array}{l} \mbox{Item name} \\ \mbox{d} = 20 \implies f \leq 30 \\ \mbox{d} = 30 \implies f \leq 40 \end{array}$	h / b	diam. or i	j
Heavy-duty dowel, longi	tudinal movement			
CRET 122	HSD-F-CRET 122 -d	120 / 120	23	
CRET 124	HSD-F-CRET 124 -d	130 / 130	25	
CRET 128	HSD-F-CRET 128 - d	140 / 140	29	
CRET 134	HSD-F-CRET 134 - d	180 /160	35	
CRET 140	HSD-F-CRET 140 - d	220 / 180	41	
Single dowel, longitudi	nal movement			
Set 20	HSD-F 20 - d	110 / 110	21	
Set 22	HSD-F 22 - d	110 / 110	23	
Set 25	HSD-F 25 - d	110 / 110	26	
Set 30	HSD-F 30 - d	110 / 110	31	
Heavy-duty dowel, long	gitudinal and transverse movement			
CRET 122 V	HSD-F-CRET 122 V - d	150 / 150	23	46
CRET 124 V	HSD-F-CRET 124 V - d	160 / 160	25	50
CRET 128 V	HSD-F-CRET 128 V - d	170 / 170	29	58
CRET 134 V	HSD-F-CRET 134 V - d	190 / 190	35	70
CRET 140 V	HSD-F-CRET 140 V - d	220 / 210	41	82
Single dowel, longitudi	nal and transverse movement			
Set 20 V	HSD-F 20 V -d	110 / 160	21	42
Set 22 V	HSD-F 22 V -d	110 / 160	23	50
Set 25 V	HSD-F 25 V -d	110 / 160	26	56
Set 30 V	HSD-F 30 V - d	110 / 160	31	62

Heavy-duty shear dowels

Assembly instructions for HALFEN HSD-CRET heavy-duty shear dowels

First concreting section

The sliding sockets are fixed to the formwork by nailing (illustrations 1 and 2); in doing this, it must be ensured that the sockets are exactly aligned in the sliding direction.

The label applied over the opening in the socket protects the socket against the entry of concrete, and must therefore not be removed. The in-situ junction and suspension reinforcement is to be installed according to the information from the static calculations and the reinforcement plan.

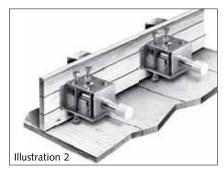
Second concreting section

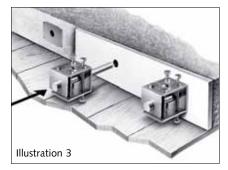
After removing the formwork from the first concreting section, the filling material is placed into the joint (illustration 3). The joint width specified in the plan must be complied with exactly.

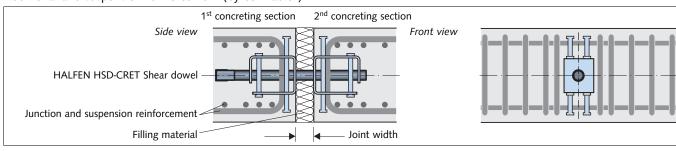
A recess in the filling material has to be provided so that the dowels can be inserted into the sockets. The required joint reinforcement is to be installed

- ① Dowel
- ② Load distribution body
- ③ Sliding socket
- ④ Nail plate for the fixation of the socket to the formwork

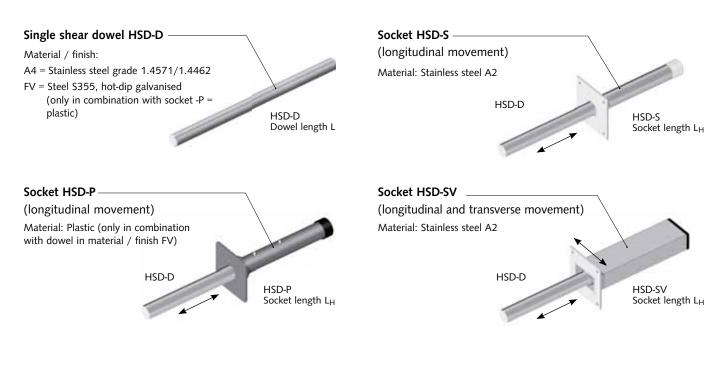
according to the data from the static calculations and the reinforcement plans. The use of the shear dowels without additional measures for environmental conditions according to DIN 1045-1 is permissible.


In the case of environmental conditions with higher requirements on corrosion protection, the dowels and the sliding sockets are to be well coated with a corrosion protection compound, e.g. on a petroleum basis. If a higher fire resistance duration is specified in the reinforcement plan, non-inflammable material must be used as filling material in the joints (e.g. mineral fibre with a relative density of approx. 110 kg/m³ according to DIN 4102 T 4).


If there are fire protection requirements on the construction components according to DIN 4102 T.2, we recommend the installation of the HALFEN HSD Shear dowels with fire protection pad (see page 15).


HSD-CRET sliding sockets nailed onto the formwork

Additional and suspension reinforcement (by contractor)

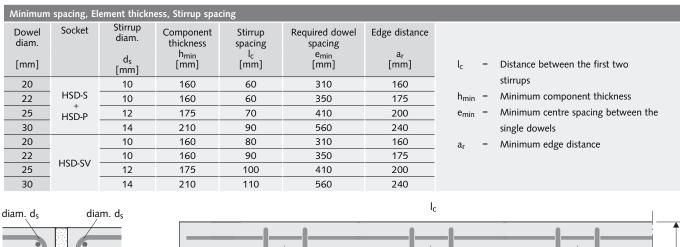


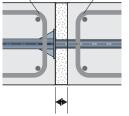
Single shear dowels

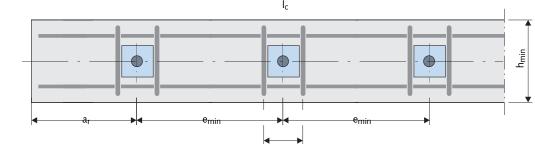
Product description

HALFEN Single shear dowels HSD allow sliding in the direction of the member axis. The dowels are normally used to transmit shear loads in any direction. If lateral movements have to be taken into account, the HSD-SV sockets are used, which permit a sideways movement, i.e. the shear load will only be transmitted in one direction.

HALFEN Single shear dowels HSD-D require no official approval.


Dimensions of single shear dowels and sockets						
	Single she	ear dowel	Sliding socke	ets HSD-P, -S	Sliding sockets HSD-SV	
Dowel type	Dowel diam. [mm]	Dowel length L [mm]	Socket length L _H [mm]	Nail plate width/height [mm]	Socket length L _H [mm]	Nail plate width/height [mm]
HSD-D 20	20	300	160	70/70	180	80/80
HSD-D 22	22	300	160	70/70	180	80/80
HSD-D 25	25	300	160	70/70	180	80/80
HSD-D 30	30	350	185	80/80	205	100/80


Ordering examples:


- Dowel: HSD-D 22 -A4
 HALFEN Shear dowel
 Diameter [mm]
 A4 = Stainless steel A4 material
- Sliding socket: HSD-SV 22 HALFEN Sliding socket
 S = Stainless steel A2
 SV = ditto, transverse and longitudinal movement
 P = Plastic
 - for dowel diameter [mm]
- - A4 = Dowel stainless steel A4, Socket S/SV = stainless steel A2 -----

Single shear dowels

Dimensioning

Dimensioning for non-reinforced concrete

Design resistances HSD-D in non-reinforced concrete according to volume 346, DAfStb (German association for reinforced concrete construction)

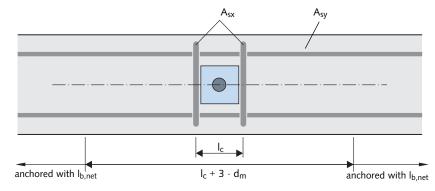
Steel load-bearing capacity:	$V_{Rd,s} = f_{\mu} \cdot 1.25 \cdot (f_{yk}/\gamma_{MS}) \cdot W / (f+diam.)$
Concrete load-bearing capacity:	$V_{Rd,c} = 0.4 \cdot f_{ck} \cdot diam.^{2.1} / (333+12.2 \cdot f)$
	0.4=(α·γ _{MW})/3

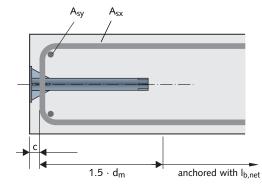
where:

f_{μ}	=	0.9 Reduction factor due to friction [-]
f _{yk}	=	yield strength [N/mm ²]
f _{ck}	=	characteristic compressive cylinder
		strength of concrete [N/mm ²]
f	=	Joint width [mm]
diam.	=	Shear dowel diameter [mm]
W	=	Section modulus [mm ³]
γms	=	Material safety factor for steel [-]

- HALFEN Single shear dowels HSD-D require no official approval.
- α = 0.85 (consideration of the long-term effects)
- γ_{MW} = 1.425 (average value from γ_G = 1.35 and γ_Q = 1.5)
- Minimum edge distance to the dowel axis $a_r = 8 \cdot diam$. (in all directions)
- Minimum axial distance $e = 16 \cdot diam$.

Dimensioning resistances VRd.s and VRd.c [kN] for non-reinforced concrete							
Dowel type	Concrete grade	Dowel-diam.	Minimum component	Design resistances [kN] for joint width f [mm]			
		0	[mm]	thickness [mm]	10	20	30
HSD-D 20		20	320	9.5	7.1	5.7	4.8
HSD-D 22	- ≥ C20/25	22	350	11.6	9.0	7.3	6.1
HSD-D 25		25	400	15.2	12.0	9.9	8.4
HSD-D 30		30	480	22.2	17.5	14.5	12.3


Single shear dowels


Dimensioning for reinforced concrete

Design resistances HSD-D in reinforced concrete according to volume 346, DAfStb (German association for reinforced concrete construction)

$V_{Rd} = min (V_{Rd,s}; V_{Rd,c})$

Required proofs:	$V_{Rd,s}$	Dimensioning resistance of the steel load-bearing capacity
Proof against punching failure V _{Rd,ct}	V _{Rd,c}	Dimensioning resistance of the
(acc. to DIN 1045-1)		concrete load-bearing capacity
Proof against concrete edge failure V _{Rd,ce}	where:	
(acc. to volume 346, DAfStb)	fμ =	Reduction factor due to friction [-]
Proof of the steel load capacity V _{Rd,s}	f _{yk} =	yield strength [N/mm ²]
Steel load-bearing capacity:	f =	Joint width [mm]
$V_{Rd,s} = f_{\mu} \cdot 1.25 \cdot (f_{yk}/\gamma_{MS}) \cdot W / (f+diam./2)$	diam. =	Shear dowel diameter [mm]
	W =	Section modulus [mm ³]
	γms =	Material safety factor for steel [-]
	d _{m =}	effective depth of the cross section

Proof of the steel load-bearing capacity

Dowel type	concrete grade	Dowel-diam. [mm]	Design resistances V _{Rd,s} [kN] for joint width f [mm]			
			10	20	30	40
HSD-D 20	- ≥ C20/25	20	14.3	9.5	7.1	5.7
HSD-D 22		22	18.1	12.2	9.3	7.4
HSD-D 25		25	24.8	17.1	13.1	10.6
HSD-D 30		30	38.5	27.5	21.4	17.5

taking account of friction (f $_{\mu}$ = 0.9)

Design resistances VRd,s for HSD-SV - longitudinal and transverse movement - for reinforced concrete

Dowel type	concrete grade	Dowel-diam.	Design resistances V _{Rd,s} [kN] for joint width f [mm]			
	, i i i i i i i i i i i i i i i i i i i	[mm]	10	20	30	40
HSD-D 20	- ≥ C20/25	20	12.8	8.6	6.4	5.1
HSD-D 22		22	16.3	11.0	8.3	6.7
HSD-D 25		25	22.3	15.4	11.8	9.5
HSD-D 30		30	34.6	24.7	19.2	15.7

taking account of friction (f $_{\mu}$ = 0.81)

Single shear dowels

Dimensioning for reinforced concrete

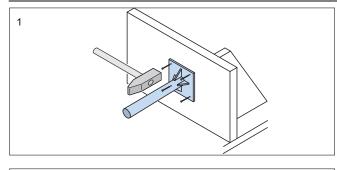
Proof of the concrete load-bearing capacity

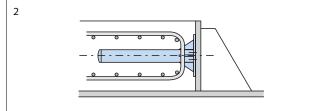
The design resistance for the concrete load-bearing capacity is the smallest dimensioning resistance from the concrete edge failure and punching failure proofs:

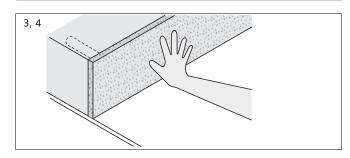
- A_{sx} = Rear suspension reinforcement
- A_{sy} = Longitudinal reinforcement
 - = Distance between the first two stirrups

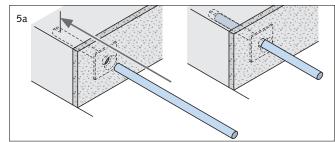
Dowel type	Component thickness h	C _{nom}	Design resistances	In-situ reinforcement		Centre spacing
			V _{Rd,c} [kN]	A _{sx}	A _{sy}	Ι _c
	[mm]	[mm]	≥ C20/25			[mm]
HSD-D 20	≥160	30	14.2	2 diam. 10	2 diam. 10	60
	≥180		15.8			
HSD-D 22	≥160	30	14.2	2 diam. 10	2 diam. 10	60
	≥180		15.8			
	≥200		17.3			
	≥220		18.9			
	≥240		20.4			
≥200 HSD-D 25 ≥220 ≥240	≥180	30	20.5	2 diam.12	2 diam.12	70
	≥200		22.4			
	≥220		24.3			
	≥240		26.2			
	≥260		28.0			
HSD-D 30 -	≥220	30	29.3	2 diam. 14	2 diam. 14	
	≥240		31.5			
	≥260		33.7			90
	≥280		35.9			90
	≥300		38.1			
	≥320		40.2			

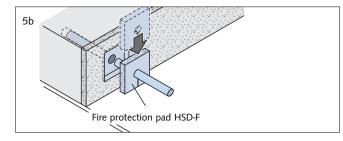
 I_{c}

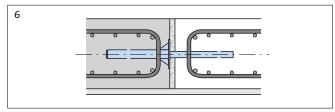

taking account of friction (f_{μ} = 1.0)


Dimensioning resista	nces VRd,c for HSD-S	V - longitudinal and	transverse movement-			
Dowel type	Component thickness h	C _{nom}	Design resistances	In-situ reinforcement		Centre spacing
			V _{Rd,c} [kN]	A _{sx}	A _{sy}	Ι _c
	[mm]	[mm]	≥ C20/25			[mm]
HSD-D 20	≥160	- 30	5)	2 diam. 10	2 diam. 10	80
	≥180		13.0			
HSD-D 22	≥160	30	5)	2 diam. 10	2 diam. 10	90
	≥180		12.5			
	≥200		13.9			
	≥220		15.3			
	≥240		16.7			
HSD-D 25	≥180	30	5)	2 diam.12	2 diam.12	100
	≥200		18.0			
	≥220		19.8			
	≥240		21.5			
	≥260		23.2			
HSD-D 30	≥220	30	24.6	2 diam. 14	2 diam. 14	
	≥240		26.7			
	≥260		28.7			110
	≥280		30.7			110
	≥300		32.7			
	≥320		34.7			


taking account of friction (f $_{\mu}$ = 0.9) ⁵⁾ No rear suspension stirrup in the break-out cone


Single shear dowels


Assembly instructions for HSD single shear dowels



1. Fixing to the formwork

Nail the socket onto the formwork according to the specified position. Important: The socket must be aligned exactly in the direction of slide.

NOTE: Do not remove the label. This protects the socket from the penetration of fresh concrete.

2. Reinforcement

Laying of the in-situ joint and rear suspension reinforcement, as well as the component reinforcement, in the $1^{\rm st}$ concreting-section.

3. Protective label

The protective label can be removed from the socket after the concreting and the removal of the formwork.

4. Joint material

Application of the joint material. The positions of the shear dowel sockets are to be exactly marked where necessary.

5. a) Shear dowel

The dowel that matches the socket is now inserted through the joint material and is pushed into the socket <u>up to the stop</u> (safety plug).

5. b) Shear dowel

In the case of fire protection requirements according to DIN 4102, a recess is to be provided in the joint material for the HALFEN fire protection pad.

6. Concreting

Positioning of the reinforcement (by contractor) and concreting the 2^{nd} concreting -section.

Tender specification and software

Text for invitation to tender

HALFEN Heavy-duty shear dowel HSD-CRET ...

HALFEN Shear dowel system HSD with technical approval No.: Z-15.7-253, or equivalent, for the transfer of shear forces in expansion joints between components made of steel reinforced concrete. Delivery of dowel- and sleeve, installation according to instructions of the producer.

Shear dowel with technical approval No.: Z-15.7-253, movable in longitudinal direction.

- Dowel: stainless steel S690 (grade: 1.4462).
- Anchorage box: stainless steel S275 (grade: 1.4404).
- Fixing rods: Stainless steel class 70 (grade: 1.4401).
- · All components fulfil at minimum the requirements of corrosion-resistance-class III.
- Maximum joint width is 60 mm.

Dowel diameter __ mm,

_____ pcs.

Suspension reinforcement according to specifications of the producer or designer.

HALFEN Heavy-duty shear dowel HSD-CRET ... V

HALFEN Shear dowel system HSD-V with technical approval No.: Z-15.7-253, or equivalent, for the transfer of shear forces in expansion joints between components made of steel reinforced concrete. Delivery of dowel- and sleeve, installation according to instructions of the producer.

Shear dowel with technical approval No.: Z-15.7-253, movable in longitudinal and transverse direction.

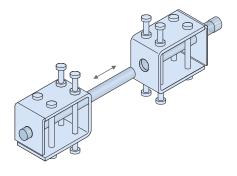
- Dowel: stainless steel S690 (grade: 1.4462).
- Anchorage box: stainless steel S275 (grade: 1.4404).
- Fixing rods: Stainless steel class 70 (grade: 1.4401).
- All components fulfil at minimum the requirements of corrosion-resistance-class III.
- Maximum joint width is 60 mm.

Dowel diameter __ mm,

_____ pcs.

Suspension reinforcement according to specifications of the producer or designer.

More submission texts are available at www.halfen.com


Software

The most recent version of the design program is available on the Internet for downloading at www.halfen.(\rightarrow country code)

If required, a DVD with all design programs, catalogues and approvals is also available. You will find our contact address on the adjacent page of this brochure. System requirements for the HALFEN HSD design software:

- Windows XP, Vista, Windows 7
- Microsoft .Net Framework 3.0

11

Leviat® A CRH COMPANY

Innovative engineered products and construction solutions that allow the industry to build safer, stronger and faster.

Worldwide contacts for Leviat:

Australia Leviat 98 Kurrajong Avenue, Mount Druitt Sydney, NSW 2770 Tel: +61 - 2 8808 3100 Email: info.au@leviat.com

Austria

Leviat Leonard-Bernstein-Str. 10 Saturn Tower, 1220 Wien Tel: +43 - 1 - 259 6770 Email: info.at@leviat.com

Belgium

Leviat Borkelstraat 131 2900 Schoten Tel: +32 - 3 - 658 07 20 Email: info.be@leviat.com

China

Leviat Room 601 Tower D, Vantone Centre No. A6 Chao Yang Men Wai Street Chaoyang District Beijing · P.R. China 100020 Tel: +86 - 10 5907 3200 Email: info.cn@leviat.com

Czech Republic Leviat Business Center Šafránkova Šafránkova 1238/1 155 00 Praha 5 Tel: +420 - 311 - 690 060 Email: info.cz@leviat.com

France Leviat 18, rue Goubet 75019 Paris Tel: +33 - 1 - 44 52 31 00 Email: info.fr@leviat.com

Germany Leviat Liebigstrasse 14 40764 Langenfeld Tel: +49 - 2173 - 970 - 0 Email: info.de@leviat.com

Italy Leviat Via F.IIi Bronzetti N° 28 24124 Bergamo Tel: +39 - 035 - 0760711 Email: info.it@leviat.com

Malaysia

Leviat 28 Jalan Anggerik Mokara 31/59 Kota Kemuning, 40460 Shah Alam Selangor Tel: +603 - 5122 4182 Email: info.my@leviat.com

Netherlands

Leviat Oostermaat 3 7623 CS Borne Tel: +31 - 74 - 267 14 49 Email: info.nl@leviat.com

New Zealand Leviat 2/19 Nuttall Drive, Hillsborough, Christchurch 8022 Tel: +64 - 3 376 5205 Email: info.nz@leviat.com

Norway Leviat Vestre Svanholmen 5 4313 Sandnes Tel: +47 - 51 82 34 00 Email: info.no@leviat.com

Poland Leviat UI. Obornicka 287 60-691 Poznan Tel: +48 - 61 - 622 14 14 Email: info.pl@leviat.com

Singapore Leviat 14 Benoi Crescent Singapore 629977 Tel: +65 - 6266 6802 Email: info.sg@leviat.com

Spain

Leviat Polígono Industrial Santa Ana c/ Ignacio Zuloaga, 20 28522 Rivas-Vaciamadrid Tel: +34 - 91 632 18 40 Email: info.es@leviat.com

Sweden

Leviat Vädursgatan 5 412 50 Göteborg Tel: +46 - 31 - 98 58 00 Email: info.se@leviat.com

Switzerland

Leviat Hertistrasse 25 8304 Wallisellen Tel: +41 - 44 - 849 78 78 Email: info.ch@leviat.com

United Kingdom

Leviat A1/A2 Portland Close Houghton Regis LU5 5AW Tel: +44 - 1582 - 470 300 E-Mail: info.uk@leviat.com

United States of America Leviat 6467 S Falkenburg Rd. Riverview, FL 33578 Tel: (800) 423-9140 Email: info.us@leviat.us

For countries not listed Email: info@leviat.com

Leviat.com

For information on certified management systems and standards see www.ancon.co.uk | www.aschwanden.com | www.halfen.com

Notes regarding this catalogue

© Protected by copyright. The construction applications and details provided in this publication are indicative only. In every case, project working details should be entrusted to appropriately qualified and experienced persons. Whilst every care has been exercised in the preparation of this publication to ensure that any advice, recommendations or information is accurate, no liability or responsibility of any kind is accepted by Leviat for inaccuracies or printing errors. Technical and design changes are reserved. With a policy of continuous product development, Leviat reserves the right to modify product design and specification at any time.

Imagine. Model. Make.

Leviat.com